Spatial Data Mining : Theory and Application

個数:

Spatial Data Mining : Theory and Application

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 308 p.
  • 言語 ENG
  • 商品コード 9783662569368
  • DDC分類 006.3

Full Description

·        This book is an updated version of a
well-received book previously published in Chinese by Science Press of China
(the first edition in 2006 and the second in 2013). It offers a systematic and
practical overview of spatial data mining, which combines computer science and
geo-spatial information science, allowing each field to profit from the
knowledge and techniques of the other. To address the spatiotemporal
specialties of spatial data, the authors introduce the key concepts and
algorithms of the data field, cloud model, mining view, and Deren Li methods.
The data field method captures the interactions between spatial objects by
diffusing the data contribution from a universe of samples to a universe of
population, thereby bridging the gap between the data model and the recognition
model. The cloud model is a qualitative method that utilizes quantitative
numerical characters to bridge the gap between pure data and linguistic
concepts. The mining view method discriminates the different requirements by
using scale, hierarchy, and granularity in order to uncover the anisotropy of
spatial data mining. The Deren Li method performs data preprocessing to prepare
it for further knowledge discovery by selecting a weight for iteration in order
to clean the observed spatial data as much as possible. In addition to the
essential algorithms and techniques, the book provides application examples of
spatial data mining in geographic information science and remote sensing. The
practical projects include spatiotemporal video data mining for protecting
public security, serial image mining on nighttime lights for assessing the
severity of the Syrian Crisis, and the applications in the government project
'the Belt and Road Initiatives'.

Contents

Introduction.- Principles of spatial data mining.- Data source of SDM1.- Spatial Data Cleaning2.- Usable Methods and Techniques in SDM2.- Data field21.- Cloud Model21.- GIS Data Mining2.- Remote Sensing Image Data Mining23.- Spatial data mining system.

最近チェックした商品