Topics in Grammatical Inference

個数:

Topics in Grammatical Inference

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 247 p.
  • 言語 ENG
  • 商品コード 9783662569207
  • DDC分類 004.0151

Full Description

This book explains advanced theoretical and
application-related issues in grammatical inference, a research area inside the
inductive inference paradigm for machine learning. The first three chapters of
the book deal with issues regarding theoretical learning frameworks; the next
four chapters focus on the main classes of formal languages according to
Chomsky's hierarchy, in particular regular and context-free languages; and the
final chapter addresses the processing of biosequences.

 

The topics chosen are of foundational interest with
relatively mature and established results, algorithms and conclusions. The book
will be of value to researchers and graduate students in areas such as
theoretical computer science, machine learning, computational linguistics, bioinformatics,
and cognitive psychology who are engaged with the study of learning, especially
of the structure underlying the concept to be learned. Some knowledge of
mathematics and theoretical computer science, including formal language theory,
automata theory, formal grammars, and algorithmics, is a prerequisite for
reading this book.

Contents

Introduction.- Gold-Style Learning Theory.- Efficiency in the Identification in the Limit Learning Paradigm.- Learning Grammars and Automata with Queries.- On the Inference of Finite State Automata from Positive and Negative Data.- Learning Probability Distributions Generated by Finite-State Machines.- Distributional Learning of Context-Free and Multiple.- Context-Free Grammars.- Learning Tree Languages.- Learning the Language of Biological Sequences.

最近チェックした商品