Structure-Preserving Algorithms for Oscillatory Differential Equations II

個数:

Structure-Preserving Algorithms for Oscillatory Differential Equations II

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 298 p.
  • 言語 ENG
  • 商品コード 9783662569139
  • DDC分類 515.62

Full Description

This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods.  The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods.

This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.

Contents

Matrix-variation-of-constants formula.- Improved St ¨ormer-Verlet formulae with applications.- Improved Filon-type asymptotic methods for highly oscillatory differential equations.- Efficient energy-preserving integrators for multi-frequency oscillatory Hamiltonian systems.- An extended discrete gradient formula for multi-frequency oscillatory Hamiltonian systems.- Trigonometric Fourier collocation methods for multi-frequency oscillatory systems.- Error bounds for explicit ERKN integrators for multi-frequency oscillatory systems.- Error analysis of explicit TSERKN methods for highly oscillatory systems.- Highly accurate explicit symplectic ERKN methods for multi-frequency oscillatory Hamiltonian systems.- Multidimensional ARKN methods for general multi-frequency oscillatory second-order IVPs.- A simplified Nystr¨om-tree theory for ERKN integrators solving oscillatory systems.- An efficient high-order explicit scheme for solving Hamiltonian nonlinear wave equations.

最近チェックした商品