Multivariate Analysemethoden : Theorie und Praxis mit R (Statistik und ihre Anwendungen) (3RD)

個数:

Multivariate Analysemethoden : Theorie und Praxis mit R (Statistik und ihre Anwendungen) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 536 p.
  • 言語 GER
  • 商品コード 9783662547533
  • DDC分類 330.015195

Full Description

Dieses Buch liefert eine Einführung in die Analyse multivariater Daten, indem es eine Vielzahl klassischer und neuerer quantitativer Verfahren behandelt. Das Buch wendet sich sowohl an Studierende im Bereich Statistik als auch an Personen aus Wissenschaft und Praxis, die Datenanalyse betreiben und dabei multivariate Verfahren anwenden wollen.

Jedes Verfahren wird zunächst anhand eines realen Problems motiviert und mit kleinen Datensätzen veranschaulicht. Darauf aufbauend wird ausführlich die Zielsetzung des Verfahrens herausgearbeitet, gefolgt von einer detaillierten Entwicklung der Theorie. Praktische Aspekte runden die Darstellung des Verfahrens ab. An allen Stellen wird mit kleinen Datensätzen die Vorgehensweise veranschaulicht. Die notwendigen Berechnungen werden sowohl manuell als auch computergestützt dargestellt. Der weiteren Vertiefung des Stoffes dienen zahlreiche Übungsaufgaben.

Ein geeignetes Werkzeug für die computergestützte Datenanalyse ist die Software R.Sie stellt zum einen eine Vielzahl von Funktionen zur Verfügung, zum anderen lässt sie sich leicht um weitere Funktionen ergänzen. Die Durchführung wird für jedes behandelte Verfahren ausführlich beschrieben. Vorkenntnisse in R sind nicht erforderlich.

Contents

Vorwort.- Teil 1 Grundlagen.- 1 Beispiele multivariater Datensätze.- 2 Elementare Behandlung der Daten.- 3 Mehrdimensionale Zufallsvariablen.- 4 Ähnlichkeits- und Distanzmaße.- Teil 2 Darstellung hochdimensionaler Daten in niedrigdimensionalen Räumen.- 5 Hauptkomponentenanalyse. 6 Mehrdimensionale Skalierung.- 7 Procrustes-Analyse.- Teil 3 Abhängigkeitsstrukturen.- 8 Lineare Regression.- 9 Explorative Faktorenanalyse.- 10 Hierarchische loglineare Modelle.- Teil 4 Gruppenstruktur.-  11 Einfaktorielle Varianzanalyse.- 12 Diskriminanzanalyse.- 13 Clusteranalyse.- Teil 5 Anhänge.- A Mathematische Grundlagen.- B Eigene R-Funktionen.- C Tabellen.

最近チェックした商品