Optimal Transport : Old and New (Grundlehren der mathematischen Wissenschaften)

個数:

Optimal Transport : Old and New (Grundlehren der mathematischen Wissenschaften)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 976 p.
  • 言語 ENG
  • 商品コード 9783662501801

Full Description

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results.



PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book's value as a most welcome reference text on this subject.

 

Contents

Couplings and changes of variables.- Three examples of coupling techniques.- The founding fathers of optimal transport.- Qualitative description of optimal transport.- Basic properties.- Cyclical monotonicity and Kantorovich duality.- The Wasserstein distances.- Displacement interpolation.- The Monge—Mather shortening principle.- Solution of the Monge problem I: global approach.- Solution of the Monge problem II: Local approach.- The Jacobian equation.- Smoothness.- Qualitative picture.- Optimal transport and Riemannian geometry.- Ricci curvature.- Otto calculus.- Displacement convexity I.- Displacement convexity II.- Volume control.- Density control and local regularity.- Infinitesimal displacement convexity.- Isoperimetric-type inequalities.- Concentration inequalities.- Gradient flows I.- Gradient flows II: Qualitative properties.- Gradient flows III: Functional inequalities.- Synthetic treatment of Ricci curvature.- Analytic and synthetic points of view.- Convergence of metric-measure spaces.- Stability of optimal transport.- Weak Ricci curvature bounds I: Definition and Stability.- Weak Ricci curvature bounds II: Geometric and analytic properties.

最近チェックした商品