Transactions on Large-Scale Data- and Knowledge-Centered Systems XXII (Lecture Notes in Computer Science)

個数:
電子版価格
¥9,567
  • 電子版あり

Transactions on Large-Scale Data- and Knowledge-Centered Systems XXII (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 185 p.
  • 商品コード 9783662485668

Full Description

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments.

This, the 22nd issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains six revised selected regular papers. Topics covered include algorithms for large-scale private analysis, modelling of entities from social and digital worlds and their relations, querying virtual security views of XML data, recommendation approaches using diversity-based clustering scores, hypothesis discovery, and data aggregation techniques in sensor netwo

rk environments.

Contents

BPMiner: Algorithms for Large-scale Private Analysis.- System Modeling and Trust Evaluation of Distributed Systems.- Efficient Querying of XML Data through Arbitrary Security Views.- Increasing Coverage in Distributed Search and Recommendation with Profile Diversity.- Hypothesis Discovery Exploiting Closed Chains of Relations.- An Analysis of Variance-Based Methods for Data Aggregation in Periodic Sensor Networks.

最近チェックした商品