Boundary Value Problems in Linear Viscoelasticity

個数:

Boundary Value Problems in Linear Viscoelasticity

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 266 p.
  • 言語 ENG
  • 商品コード 9783662061589
  • DDC分類 530

Full Description

The classical theories of Linear Elasticity and Newtonian Fluids, though trium­ phantly elegant as mathematical structures, do not adequately describe the defor­ mation and flow of most real materials. Attempts to characterize the behaviour of real materials under the action of external forces gave rise to the science of Rheology. Early rheological studies isolated the phenomena now labelled as viscoelastic. Weber (1835, 1841), researching the behaviour of silk threats under load, noted an instantaneous extension, followed by a further extension over a long period of time. On removal of the load, the original length was eventually recovered. He also deduced that the phenomena of stress relaxation and damping of vibrations should occur. Later investigators showed that similar effects may be observed in other materials. The German school referred to these as "Elastische Nachwirkung" or "the elastic aftereffect" while the British school, including Lord Kelvin, spoke ofthe "viscosityofsolids". The universal adoption of the term "Viscoelasticity", intended to convey behaviour combining proper­ ties both of a viscous liquid and an elastic solid, is of recent origin, not being used for example by Love (1934), though Alfrey (1948) uses it in the context of polymers. The earliest attempts at mathematically modelling viscoelastic behaviour were those of Maxwell (1867) (actually in the context of his work on gases; he used this model for calculating the viscosity of a gas) and Meyer (1874).

Contents

1. Fundamental Relationships.- 2. General Theorems and Methods of Solution of Boundary Value Problems.- 3. Plane Non-inertial Contact Problems.- 4. Plane Non-inertial Crack Problems.- 5. Three-dimensional Contact Problems.- 6. Thermoviscoelastic Boundary Value Problems.- 7. Plane Inertial Problems.- Appendix I Tables of Relevant Integrals and Other Formulae.- Table A1.1 Hilbert Transforms on [-1, 1].- Table A1.3 Miscellaneous Integrals Associated with Hilbert Transforms.- Table A1.4 Other Miscellaneous Integrals and Relationships.- Appendix II Boundary Value Problems for Analytic Functions.- A2.1 Some Properties of Analytic Functions.- A2.1.1 The Principle Value of a Singular Integral.- A2.1.2 Analytic Continuation.- A2.1.3 Liouville's Theorem.- A2.1.4 Singularities.- A2.1.5 Branch Points.- A2.2 Cauchy Integrals.- A2.3 The Hilbert Problem with Constant Coefficient.- A2.4 The Hilbert Transform.- Appendix III Fourier Transforms.- A3.1 Definition and Basic Properties.- A3.2 Analytic Properties of Fourier Integrals.- Appendix IV Non-singular Integral Equations.- A4.1 Fredholm Equations.- A4.2 Volterra Equations.- References.

最近チェックした商品