Die Praktische Behandlung von Integral-Gleichungen (Ergebnisse der angewandten Mathematik)

個数:

Die Praktische Behandlung von Integral-Gleichungen (Ergebnisse der angewandten Mathematik)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 128 p.
  • 言語 GER
  • 商品コード 9783662013953
  • DDC分類 510

Full Description

Die praktische Behandlung der Integralgleichungen bildet einen ver­ hältnismäßig jungen, noch im Wachstum begriffenen Zweig der prak­ tischen Mathematik. Immerhin hat die Entwicklung praktischer Me­ thoden für die linearen Integralgleichungen 2. Art (auch Fredholmsche Integralgleichungen genannt) heute einen Stand erreicht, der es recht­ fertigt, die bisher bekannt gewordenen Verfahren zu ordnen und ihre Grundlagen und Zusammenhänge nach Möglichkeit darzulegen. Dies ist der Gegenstand dieses Berichts. Es zeigt sich, daß die weitaus größte Zahl der praktischen Verfahren zu zwei großen Kategorien gehört, nämlich zu den Iterationsverfahren und zu solchen, die sich auf einen Ersatz des Kerns der Integralgleichung zurückführen lassen. Da Iterfl,tion und Kernersatz nicht auf Fredholm­ sehe Gleichungen beschränkt sind, so ist zu hoffen, daß die Begründung beider Methoden für Fredholmsche Gleichungen auch von Nutzen für die praktische Behandlung anderer Integralgleichungstypen sein wird, insbesondere für die linearen Integralgleichungen 1. Art, die in diesem Bericht nicht behandelt werden. Obwohl es in vielen Fällen keine Schwierigkeit bereitet, die in diesem Bericht behandelten Methoden auf Integralgleichungen 1. Art anzuwenden, so ist doch die Entwick­ lung von Verfahren für diesen Typ noch zu sehr im Flusse, um ihre Zusammenstellung und Ordnung nicht als verfrüht erscheinen zu lassen. Immerhin sei in diesem Zusammenhang auf einige wichtige Literatur hingewiesen, nämlich auf die Bücher und Arbeiten [20], [30], [36], [44], [61], [63], [71], [78], [80] und [83]. Hier wie auch im ganzen Bericht beziehen sich Zahlen in eckigen Klammern auf das am Ende befindliche Literaturverzeichnis. Die Einschließungssätze des H.

Contents

I. Abschnitt. Formeln und Sätze aus der Theorie der Fredholmschen Integralgleichungen.- § 1. Fredholmsche Integralgleichungen, Systeme und gemischte Gleichungen, Integraloperatoren.- § 2. Der reziproke Kern und die Fredholmschen Formeln.- § 3. Orthogonale und biorthogonale Systeme von Funktionen; die Nullstellen der Fredholmschen Determinante.- § 4. Spezielle Integraloperatoren.- § 5. Zusammengesetzte Operatoren.- II. Abschnitt. Die Berechnung von Eigenwerten mit Hilfe von Formeln und Variationsprinzipien. Einschließungssätze.- § 6. Berechnung der Eigenwerte aus der Fredholmschen Determinante.- § 7. Die Potenzsummen der reziproken Eigenwerte.- § 8. Extremaleigenschaften der Eigenwerte eines Hermiteschen Kerns. 1. Einschließungssatz.- § 9. Extremaleigenschaften rational transformierter Eigenwerte Hermitescher Integraloperatoren und allgemeine Einschließungssätze.- § 10. Dreigliedrige Einschließungspolynome. Verträgliche Spektra.- III. Abschnitt. Iterationsverfahren.- § 11. Asymptotisches Gesetz der klassischen Iteration.- § 12. Der Begriff der Beteiligung.- § 13. Anwendung des klassischen Iterationsverfahrens auf die inhomogene Integralgleichung.- § 14. Die Berechnung des 1. Eigenwertes eines beliebigen Kerns für den Fall |?1| t.- § 42. Die Volterrasche Integralgleichung vom Faltungstyp.- § 43. Kerne, die sich physikalisch-technisch realisieren lassen.

最近チェックした商品