Utilizing Embeddings to Learn a Universal Customer Behavior Representation in E-Commerce (2026. xviii, 187 S. XVIII, 187 p. Textbook for German language market.)

個数:
  • 予約

Utilizing Embeddings to Learn a Universal Customer Behavior Representation in E-Commerce (2026. xviii, 187 S. XVIII, 187 p. Textbook for German language market.)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783658507800

Full Description

E-commerce operates in a highly dynamic and competitive environment, where customer satisfaction is key to success. Delivering personalized experiences at scale requires systems capable of reliably modeling individual customer behavior while respecting privacy and data protection constraints such as the GDPR. This book proposes a universal, privacy-compliant customer representation that is task-agnostic and incrementally adaptable. A decoupled three-stage approach is introduced, combining self-supervised learning of customer embeddings from behavioral data with flexible downstream models for predicting customer intentions. Temporal extensions improve performance, particularly under sparse information conditions, while lifelong learning enables dynamic adaptation to new interactions and evolving product spaces without full retraining.
Comprehensive experiments across multiple real-world e-commerce datasets demonstrate consistent performance improvements over state-of-the-art baselines. By decoupling personalization from personal data, this work offers a scalable and privacy-preserving foundation for next-generation personalization systems.

Contents

Introduction.- Fundamentals and Research Scope.- State-of-the-Art.- Use Cases and Data.- Learning Universal Customer Behavior Representation in E-Commerce
with Embeddings.- Enhancing Customer Behavior Embeddings with Additional Information.- Lifelong Learning Embeddings for Adaptive Customer Behavior
Modeling.- Beyond E-Commerce: Generalizing Self-Supervised Behavior Embedding Representation.- Critical Reflection and Outlook.- Summary.

最近チェックした商品