Kalman-Filter : Einführung in die Zustandsschätzung und ihre Anwendung für eingebettete Systeme (2ND)

個数:

Kalman-Filter : Einführung in die Zustandsschätzung und ihre Anwendung für eingebettete Systeme (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 238 p.
  • 言語 GER
  • 商品コード 9783658432157

Full Description

Dieses Lehrbuch befasst sich leicht verständlich mit der Theorie der Kalman-Filterung. Die Autoren geben damit eine Einführung in Kalman-Filter und deren Anwendung für eingebettete Systeme. Zusätzlich wird anhand konkreter Praxisbeispiele der Kalman-Filterentwurf demonstriert - Teilschritte werden im Buch ausführlich erläutert.Kalman-Filter sind die erste Wahl, um Störsignale auf den Sensorsignalen zu eliminieren. Dies ist von besonderer Bedeutung, da viele technische Systeme ihre prozessrelevanten Informationen über Sensoren gewinnen. Jeder Messwert eines Sensors weißt jedoch aufgrund verschiedener Ursachen einen Messfehler auf. Würde ein System nur auf Basis dieser ungenauen Sensorinformationen arbeiten, so wären viele Anwendungen, wie zum Beispiel ein Navigationssystem oder autonome arbeitende Systeme, nicht möglich.Das Buch ist geeignet für interessierte Bachelor- und Master-Studierende der Fachrichtungen Informatik, Maschinenbau, Elektrotechnik undMechatronik. Ebenso ist das Buch eine Hilfe für Ingenieure und Wissenschaftler, die ein Kalman-Filter z. B. für die Datenfusion oder die Schätzung unbekannter Größen in Echtzeitanwendungen einsetzen möchten.

Contents

Einführendes Beispiel.- Zustandsraumbeschreibung.- Wahrscheinlichkeitstheorie.- Signaltheorie.- Klassisches Kalman-Filter.- Adaptiver Kalman-Filter (ROSE-Filter).- Nichtlineare Kalman Filter.- Systemrauschen.- Gütemaße.- Prinzipielles Vorgehen.- Beispiel: Bias Schätzung.- Beispiel: Kinematische Modelle.- Beispiel: Messrauschen mit Offset.- Beispiel: Alternatives Bewegungsmodell der Mondfähre.- Beispiel: Kovarianzmatrix Messrauschen.- Beispiel: Umfeldsensor mit ROSE-Filter.- Beispiel: Fahrstreifenerkennung.- Beispiel: Gleichstrommotor.- Beispiel: Positions- und Geschwindigkeitsschätzung mit EKF-Filter.

最近チェックした商品