人工知能入門(テキスト・第3版)<br>Introduction to Artificial Intelligence (Undergraduate Topics in Computer Science) (3RD)

個数:

人工知能入門(テキスト・第3版)
Introduction to Artificial Intelligence (Undergraduate Topics in Computer Science) (3RD)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 383 p.
  • 商品コード 9783658431013

Full Description

This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated third edition also includes new material on deep learning.

Topics and features:

·        Presents an application-focused and hands-on approach to learning, with          supplementary teaching resources provided at an associated website 

·        Introduces convolutional neural networks as the currently most important type of deep learning networks with applications to image classification (NEW) 

·        Contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons 

·        Reports on developments in deep learning, including applications of neural networks to large language models as used in state-of-the-art chatbots as well as to the generation of music and art (NEW) 

·        Includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks, and reinforcement learning

 ·        Covers various classical machine learning algorithms and introduces important general concepts such as cross validation, data normalization, performance metrics and data augmentation (NEW)

·       Includes a section on AI and society, discussing the implications of AI on topics such as employment and transportation Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.

Dr. Wolfgang Ertel is a professor at the Institute for Artificial Intelligence at the Ravensburg-Weingarten University of Applied Sciences, Germany.

 

Contents

Introduction.- Propositional Logic.- First-order Predicate Logic.- Limitations of Logic.- Logic Programming with PROLOG.- Search, Games and Problem Solving.- Reasoning with Uncertainty.- Machine Learning and Data Mining.- Neural Networks.- Reinforcement Learning.- Solutions for the Exercises.

最近チェックした商品