Idealtheorie (Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge 46) (2. Aufl. 2014. xii, 160 S. XII, 160 S. 1 Abb. 235 mm)

個数:

Idealtheorie (Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge 46) (2. Aufl. 2014. xii, 160 S. XII, 160 S. 1 Abb. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783642870347

Description


(Table of content)
1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Idealtheorie.- 5. Ganz abgeschlossene Integritätsbereiche.- 2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der O-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- 3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheitssätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das "Rechnen" mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. DerBézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von vanderWaerden.- 27. Der Grad einer Mannigfaltigkeit und der "allgemeine" Bézoutsche Satz.- 28. Zweifach projektive Räume.- 4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30. Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- 5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung eines O-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines "Grundkörpers".- 6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.-43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A-Ideale.- 47. Einordnung des A-Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.- Ergänzungen zur 2. Auflage.

Contents

§ 1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Idealtheorie.- 5. Ganz abgeschlossene Integritätsbereiche.- § 2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der O-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- § 3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheitssätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das „Rechnen" mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. DerBézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von vanderWaerden.- 27. Der Grad einer Mannigfaltigkeit und der „allgemeine" Bézoutsche Satz.- 28. Zweifach projektive Räume.- § 4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30. Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- § 5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung eines O-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines „Grundkörpers".- § 6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.- 43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A-Ideale.- 47. Einordnung des A-Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.- Ergänzungen zur 2. Auflage.

最近チェックした商品