Viscous Flow Applications (Topics in Boundary Element Research) (Reprint)

個数:

Viscous Flow Applications (Topics in Boundary Element Research) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 194 p.
  • 言語 ENG
  • 商品コード 9783642836855
  • DDC分類 530

Full Description

The Boundary Element Method has now become a powerful tool of engineering analysis and is routinely applied for the solution of elastostatics and potential problems. More recently research has concentrated on solving a large variety of non-linear and time dependent applications and in particular the method has been developed for viscous fluid flow problems. This book presents the state of the art on the solution of viscous flow using boundary elements and discusses different current approaches which have been validated by numerical experiments. . Chapter 1 of the book presents a brief review of previous work on viscous flow simulation and in particular gives an up-to-date list of the most important BEM references in the field. Chapter 2 reviews the governing equations for general viscous flow, including compressibility. The authors present a compre­ hensive treatment of the different cases and their formulation in terms of boundary integral equations. This work has been the result of collaboration between Computational Mechanics Institute of Southampton and Massa­ chusetts Institute of Technology researchers. Chapter 3 describes the gen­ eralized formulation for unsteady viscous flow problems developed over many years at Georgia Institute of Technology. This formulation has been extensively applied to solve aer09ynamic problems.

Contents

1 A Brief Review of Previous Work on Viscous Flow Simulation.- 1.1 Introduction.- 1.2 Review of Work on Boundary Elements.- References.- 2 Boundary Element Formulation for Viscous Compressible Flow.- 2.1 Introduction.- 2.2 Proposed Approach.- 2.3 Statement of the Problems—Governing Equations for Compressible Fluid Flow.- 2.4 State of the Art in Boundary Elements for Fluids.- References.- 3 A Generalized Formulation for Unsteady Viscous Flow Problems.- 3.1 Introduction.- 3.2 Mathematical Formulation.- 3.3 Numerical Formulation.- 3.4 Results and Discussions.- 3.5 Concluding Remarks.- Acknowledgement.- References.- 4 Natural and Forced Convection Simulation Using the Velocity-Vorticity Approach.- 4.1 Introduction.- 4.2 Governing Equations.- 4.3 Vector Potential.- 4.4 Boundary Integral Equation for Flow Kinematics.- 4.5 Discretisation of the BIE for Flow Kinematics.- 4.6 Boundary Integral Equation for the Flow Kinetics.- 4.7 Discretised BIE for the Kinetics of Flow.- 4.8 Boundary Integral Equation for Energy Transport.- 4.9 Discretised Energy Transport Equation.- 4.10 Computational Scheme.- 4.11 Boundary Conditions.- 4.12 Numerical Examples.- 4.13 Conclusion.- References.- 5 A Boundary Element Analysis for Thermal Convection Problems.- 5.1 Introduction.- 5.2 Theory.- 5.3 Numerical Implementation.- 5.4 Numerical Results.- 5.5 Conclusion.- Acknowledgement.- References.- 6 Calculation of the Potential Flow with Consideration of the Boundary Layer.- 6.1 Introduction.- 6.2 Potential Flow.- 6.3 Boundary Layer.- 6.4 Example.- 6.5 Conclusions.- References.- 7 Applications in Non-Newtonian Fluid Mechanics.- 7.1 Introduction.- 7.2 The Behaviour of Non-Newtonian Liquids.- 7.3 Governing Equations.- 7.4 Boundary Integral Formulations and Solution Methods.- 7.5 Applications.- 7.6Conclusions.- References.- 8 Viscous Fluid Mechanics.- Abstract.- 8.1 Introduction.- 8.2 Governing Equations.- 8.3 Integral Formulations.- 8.4 Numerical Procedure.- 8.5 Numerical Examples for Stokes Flows.- 8.6 Numerical Examples for Convective Flows.- 8.7 Conclusion.- References.

最近チェックした商品