Stochastic Linear Programming (Okonometrie Und Unternehmensforschung Econometrics and Operations Research) (Reprint)

個数:

Stochastic Linear Programming (Okonometrie Und Unternehmensforschung Econometrics and Operations Research) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783642662546
  • DDC分類 330

Full Description

Todaymanyeconomists, engineers and mathematicians are familiar with linear programming and are able to apply it. This is owing to the following facts: during the last 25 years efficient methods have been developed; at the same time sufficient computer capacity became available; finally, in many different fields, linear programs have turned out to be appropriate models for solving practical problems. However, to apply the theory and the methods of linear programming, it is required that the data determining a linear program be fixed known numbers. This condition is not fulfilled in many practical situations, e. g. when the data are demands, technological coefficients, available capacities, cost rates and so on. It may happen that such data are random variables. In this case, it seems to be common practice to replace these random variables by their mean values and solve the resulting linear program. By 1960 various authors had already recog­ nized that this approach is unsound: between 1955 and 1960 there were such papers as "Linear Programming under Uncertainty", "Stochastic Linear Pro­ gramming with Applications to Agricultural Economics", "Chance Constrained Programming", "Inequalities for Stochastic Linear Programming Problems" and "An Approach to Linear Programming under Uncertainty".

Contents

0. Prerequisites.- 1. Linear Programming..- 2. Nonlinear Programming.- 3. Measure Theory and Probability Theory.- I. Introduction.- II. Distribution Problems.- 1. The General Case.- 2. Special Problems.- III. Two Stage Problems.- 1. The General Case.- 2. The Fixed Recourse Case.- 3. Complete Fixed Recourse.- 4. Simple Recourse.- 5. Computational Remarks.- 6. Another Approach to Two Stage Programming.- IV. Chance Constrained Programming.- 1. Convexity Statements.- 2. Relationship between Chance Constrained Programs and Two Stage Problems.- References.

最近チェックした商品