Approximation by Spline Functions (Softcover reprint of the original 1st ed. 1989. 2013. xi, 244 S. XI, 2)

個数:

Approximation by Spline Functions (Softcover reprint of the original 1st ed. 1989. 2013. xi, 244 S. XI, 2)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783642647994

Full Description

Splines play an important role in applied mathematics since they possess high flexibility to approximate efficiently, even nonsmooth functions which are given explicitly or only implicitly, e.g. by differential equations. The aim of this book is to analyse in a unified approach basic theoretical and numerical aspects of interpolation and best approximation by splines in one variable. The first part on spaces of polynomials serves as a basis for investigating the more complex structure of spline spaces. Given in the appendix are brief introductions to the theory of splines with free knots (an algorithm is described in the main part), to splines in two variables and to spline collocation for differential equations.A large number of new results presented here cannot be found in earlier books on splines. Researchers will find several references to recent developments. The book is an indispensable aid for graduate courses on splines or approximation theory. Students with a basic knowledge of analysis and linear algebra will be able to read the text. Engineers will find various pactical interpolation and approximation methods.

Contents

I. Polynomials and Chebyshev Spaces.- 1. Interpolation by Chebyshev Spaces.- 2. Interpolation by Polynomials and Divided Differences.- 3. Best Uniform Approximation by Chebyshev Spaces.- 4. Best L1-Approximation by Chebyshev Spaces.- 5. Best One-Sided L1-Approximation by Chebyshev Spaces and Quadrature Formulas.- 6. Best L2-Approximation.- II. Splines and Weak Chebyshev Spaces.- 1. Weak Chebyshev Spaces.- 2. B-Splines.- 3. Interpolation by Splines.- 4. Best Uniform Approximation by Splines.- 5. Continuity of the Set Valued Metric Projection for Spline Spaces....- 6. Best L1-Approximation by Weak Chebyshev Spaces.- 7. Best One-Sided L1-Approximation by Weak Chebyshev Spaces and Quadrature Formulas.- 8. Approximation of Linear Functionals and Splines.- 9. Spaces of Splines with Multiple Knots.- 1. Splines with Free Knots.- 2. Splines in Two Variables.- 2.1. Tensor Product and Blending.- 2.2. Finite Element Functions.- 2.3. Spline Functions.- 3. Spline Collocation and Differential Equations.- References.

最近チェックした商品