Lagrangian Manifolds and the Maslov Operator (Springer Series in Soviet Mathematics) (Reprint)

個数:

Lagrangian Manifolds and the Maslov Operator (Springer Series in Soviet Mathematics) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 405 p.
  • 言語 ENG
  • 商品コード 9783642647659
  • DDC分類 515

Full Description

This book presents Maslov's canonical operator method for finding asymptotic solutions of pseudo differential equations. The classical WKB method, so named in honor of its authors: Wentzel, Kramers and Brillouin, was created for finding quasi classical approximations in quantum mechanics. The simplicity, obviousness and "physicalness" of this method quickly made it popular: specialists in mathematical physics accepted it unequivocally as one of the weapons in their arsenal. The number of publications which are connected with the WKB method in one way or another can probably no longer be counted. The alternative name of the WKB method in diffraction problem- the ray method or the method of geometric optics - indicates that the approximations in the WKB method are constructed by means of rays. More precisely, the first approximation of the WKB method is constructed by means of rays (isolating the singular part), after which the usual methods of the (regular) theory of perturbations are applied. However, the ray method is not applicable at the points of space where the rays focus or form a caustic. Mathematically this fact expresses itself in the fact that the amplitude of the waves at such points become infinite.

Contents

I. The Topology of Lagrangian Manifolds.- 1. Some Topological Considerations.- 2. The Geometry of Real Lagrangian Manifolds.- 3. Complex Lagrangian Manifolds.- II. Maslov's Canonical Operator on a Real Lagrangian Manifold.- 4. Maslov's Canonical Operator (Real Case).- 5. The Asymptotics of Integrals of Rapidly Oscillating Functions with a Complex Phase.- 6. Maslov's Canonical Operator (Complex Case).- 7. Some Applications.- Appendix. Fourier-Maslov Integral Operators (The Smooth Theory of Maslov's Canonical Operator).- Notation Index.

最近チェックした商品