Computational Materials Science : From Ab Initio to Monte Carlo Methods (Springer Series in Solid-state Sciences) (Reprint)

個数:
  • ポイントキャンペーン

Computational Materials Science : From Ab Initio to Monte Carlo Methods (Springer Series in Solid-state Sciences) (Reprint)

  • ウェブストア価格 ¥24,313(本体¥22,103)
  • Springer Verlag(2012/07発売)
  • 外貨定価 US$ 109.99
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 1,105pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 335 p.
  • 言語 ENG
  • 商品コード 9783642641558
  • DDC分類 530

Full Description

There has been much progress in the computational approaches in the field of materials science during the past two decades. In particular, computer simula­ tion has become a very important tool in this field since it is a bridge between theory, which is often limited by its oversimplified models, and experiment, which is limited by the physical parameters. Computer simulation, on the other hand, can partially fulfill both of these paradigms, since it is based on theories and is in fact performing experiment but under any arbitrary, even unphysical, conditions. This progress is indebted to advances in computational physics and chem­ istry. Ab initio methods are being used widely and frequently in order to determine the electronic and/or atomic structures of different materials. The ultimate goal is to be able to predict various properties of a material just from its atomic coordinates, and also, in some cases, to even predict the sta­ ble atomic positions of a given material. However, at present, the applications of ab initio methods are severely limited with respect to the number of par­ ticles and the time scale of dynamical simulation. This is one extreme of the methodology based on very accurate electronic-level calculations.

Contents

1. Introduction.- 1.1 Computer Simulation as a Tool for Materials Science.- 1.2 Modeling of Natural Phenomena.- 2. Ab Initio Methods.- 2.1 Introduction.- 2.2 Electronic States of Many-Particle Systems.- 2.3 Perturbation and Linear Response.- 2.4 Ab Initio Molecular Dynamics.- 2.5 Applications.- 2.6 Beyond the Born-Oppenheimer Approximation.- 2.7 Electron Correlations Beyond the LDA.- References.- 3. Tight-Binding Methods.- 3.1 Introduction.- 3.2 Tight-Binding Formalism.- 3.3 Methods to Solve the Schrödinger Equation for Large Systems.- 3.4 Self-Consistent Tight-Binding Formalism.- 3.5 Applications to Fullerenes, Silicon and Transition-Metal Clusters.- References.- 4. Empirical Methods and Coarse-Graining.- 4.1 Introduction.- 4.2 Reduction to Classical Potentials.- 4.3 The Connolly-Williams Approximation.- 4.4 Potential Renormalization.- References.- 5. Monte Carlo Methods.- 5.1 Introduction.- 5.2 Basis of the Monte Carlo Method.- 5.3 Algorithms for Monte Carlo Simulation.- 5.4 Applications.- References.- 6. Quantum Monte Carlo (QMC) Methods.- 6.1 Introduction.- A. Molecular Dynamics and Mechanical Properties.- A.l Time Evolution of Atomic Positions.- A.2 Acceleration of Force Calculations.- A.2.1 Particle-Mesh Method.- A.2.2 The Greengard-Rockhlin Method.- References.- B. Vibrational Properties.- References.- C. Calculation of the Ewald Sum.- References.- D. Optimization Methods Used in Materials Science.- D.l Conjugate-Gradient Minimization.- D.2 Broyden's Method.- D.3 SA and GA as Global Optimization Methods.- D.3.1 Simulated Annealing (SA).- D.3.2 Genetic Algorithm (GA).- References.

最近チェックした商品