Finiteness and Regularity in Semigroups and Formal Languages (Monographs in Theoretical Computer Science. an Eatcs Series) (Reprint)

個数:

Finiteness and Regularity in Semigroups and Formal Languages (Monographs in Theoretical Computer Science. an Eatcs Series) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9783642641503
  • DDC分類 005

Full Description

The aim of this monograph is to present some recent research work on the combinatorial aspects of the theory of semigroups which are of great inter­ est for both algebra and theoretical computer science. This research mainly concerns that part of combinatorics of finite and infinite words over a finite alphabet which is usually called the theory of "unavoidable" regularities. The unavoidable regularities ofsufficiently large words over a finite alpha­ bet are very important in the study of finiteness conditions for semigroups. This problem consists in considering conditions which are satisfied by a fi­ nite semigroup and are such as to assure that a semigroup satisfying them is finite. The most natural requirement is that the semigroup is finitely gener­ ated. Ifone supposes that the semigroup is also periodic the study offiniteness conditions for these semigroups (or groups) is called the Burnside problem for semigroups (or groups). There exists an important relationship with the theory of finite automata because, as is well known, a language L over a fi­ nite alphabet is regular (that is, recognizable by a finite automaton) if and only if its syntactic monoid S(L) is finite. Hence, in principle, any finite­ ness condition for semigroups can be translated into a regularity condition for languages. The study of finiteness conditions for periodic languages (Le. , such that the syntactic semigroup is periodic) has been called the Burnside problem for languages.

Contents

1. Combinatorics on Words.- 1.1 Preliminaries.- 1.2 Infinite words.- 1.3 Metric and topology.- 1.4 Periodicity and conjugacy.- 1.5 Lyndon words.- 1.6 Factorial languages and subword complexity.- 2. Unavoidable Regularities.- 2.1 Ramsey's theorem.- 2.2 Van der Waerden's theorem.- 2.3 Uniformly recurrent words.- 2.4 Shirshov's theorem.- 2.5 Bounded languages.- 2.6 Power-free words.- 2.7 Bi-ideal sequences.- 3. Finiteness Conditions for Semigroups.- 3.1 Preliminaries on semigroups.- 3.2 Finitely generated semigroups.- 3.3 The Burnside problem.- 3.4 Permutation property.- 3.5 Partial commutations.- 3.6 Chain conditions.- 3.7 Iteration property.- 3.8 Permutation and iteration property.- 3.9 Repetitivity.- 4. Finitely Recognizable Semigroups.- 4.1 The Myhill-Nerode theorem.- 4.2 Finitely recognizable semigroups.- 4.3 The factor semigroup.- 4.4 Rewriting systems.- 4.5 The word problem.- 4.6 On a conjecture of Brzozowski.- 4.7 On a conjecture of Brown.- 5. Regularity Conditions.- 5.1 Uniform conditions.- 5.2 Pumping properties.- 5.3 Permutative property.- 6. Well Quasi-orders and Regularity.- 6.1 Well quasi-orders.- 6.2 Higman's theorem.- 6.3 The generalized Myhill theorem.- 6.4 Quasi-orders and rewriting systems.- 6.5 A regularity condition for permutable languages.- 6.6 Almost-commutative languages.- 6.7 Copying systems.- References.

最近チェックした商品