Reinforcement Learning for Adaptive Dialogue Systems : A Data-driven Methodology for Dialogue Management and Natural Language Generation (Theory and Applications of Natural Language Processing) (2011)

個数:

Reinforcement Learning for Adaptive Dialogue Systems : A Data-driven Methodology for Dialogue Management and Natural Language Generation (Theory and Applications of Natural Language Processing) (2011)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9783642439841
  • DDC分類 006.3

Full Description

The past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation.

This book is a unique contribution to that ongoing change. A new  methodology for developing spoken dialogue systems is described in detail. The journey starts and ends with human behaviour in interaction, and explores methods for learning from the data, for building simulation environments for training and testing systems, and for evaluating the results. The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-of-Oz data collection, User Simulation methods, Reinforcement Learning, and Evaluation methodologies.

The book is a research guide for students and researchers with a background in Computer Science, AI, or Machine Learning. It navigates through a detailed case study in data-driven methods for development and evaluation of spoken dialogue systems. Common challenges associated with this approach are discussed and example solutions are provided. This work provides insights, lessons, and inspiration for future research and development - not only for spoken dialogue systems in particular, but for data-driven approaches to human-machine interaction in general.

Contents

1.Introduction.- 2.Background.- 3.Reinforcement Learning for Information Seeking dialogue strategies.- 4.The bootstrapping approach to developing Reinforcement Learning-based  strategies.- 5.Data Collection in aWizard-of-Oz experiment.- 6.Building a simulated learning environment from Wizard-of-Oz data.- 7.Comparing Reinforcement and Supervised Learning of dialogue policies with real users.- 8.Meta-evaluation.- 9.Adaptive Natural Language Generation.- 10.Conclusion.- References.- Example Dialogues.- A.1.Wizard-of-Oz Example Dialogues.- A.2.Example Dialogues from Simulated Interaction.- A.3.Example Dialogues from User Testing.- Learned State-Action Mappings.- Index.

最近チェックした商品