Robust Speech Recognition of Uncertain or Missing Data : Theory and Applications (2011)

個数:

Robust Speech Recognition of Uncertain or Missing Data : Theory and Applications (2011)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 380 p.
  • 商品コード 9783642438684

Full Description

Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition.

The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.

Contents

Chap. 1 - Introduction.-

Part I - Theoretical Foundations.-

Chap. 2 - Uncertainty Decoding and Conditional Bayesian Estimation.- Chap. 3 - Uncertainty Propagation.-

Part II - Applications.-

Chap. 4 - Front-End, Back-End, and Hybrid Techniques for Noise-Robust Speech Recognition.- Chap. 5 - Model-Based Approaches to Handling Uncertainty.- Chap. 6 - Reconstructing Noise-Corrupted Spectrographic Components for Robust Speech Recognition.- Chap. 7 - Automatic Speech Recognition Using Missing Data Techniques: Handling of Real-World Data.- Chap. 8 - Conditional Bayesian Estimation Employing a Phase-Sensitive Estimation Model for Noise-Robust Speech Recognition.-  

Part III - Reverberation Robustness.-

Chap. 9 - Variance Compensation for Recognition of Reverberant Speech with Dereverberation Processing.- Chap. 10 - A Model-Based Approach to Joint Compensation of Noise and Reverberation for Speech Recognition.-

Part IV - Applications: Multiple Speakers and Modalities.-

Chap. 11 - Evidence Modelling for Missing Data Speech Recognition Using Small Microphone Arrays.- Chap. 12 - Recognition of Multiple Speech Sources Using ICA.- Chap. 13 - Use of Missing and Unreliable Data for Audiovisual Speech Recognition.-  

Index.

最近チェックした商品