Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition (Adaptation, Learning, and Optimization)

個数:

Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition (Adaptation, Learning, and Optimization)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 321 p.
  • 言語 ENG
  • 商品コード 9783642437625
  • DDC分類 006.3

Full Description

For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach.

 

After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in challenging application domains, focusing on the state of the art of multidimensional extensions such as global convergence in particle swarm optimization, dynamic data clustering, evolutionary neural networks, biomedical applications and personalized ECG classification, content-based image classification and retrieval, and evolutionary feature synthesis. The content is characterizedby strong practical considerations, and the book is supported with fully documented source code for all applications presented, as well as many sample datasets.

 

The book will be of benefit to researchers and practitioners working in the areas of machine intelligence, signal processing, pattern recognition, and data mining, or using principles from these areas in their application domains. It may also be used as a reference text for graduate courses on swarm optimization, data clustering and classification, content-based multimedia search, and biomedical signal processing applications.

Contents

Chap. 1 Introduction.- Chap. 2 Optimization Techniques.- Chap. 3 Particle Swarm Optimization.- Chap. 4 Multidimensional Particle Swarm Optimization.- Chap. 5 Improving Global Convergence.- Chap. 6 Dynamic Data Clustering.- Chap. 7 Evolutionary Artificial Neural Networks.- Chap. 8 Personalized ECG Classification.- Chap. 9 Image Classification Through a Collective Network of Binary Classifiers.- Chap. 10 Evolutionary Feature Synthesis for Image Retrieval.

最近チェックした商品