Sparsity : Graphs, Structures, and Algorithms (Algorithms and Combinatorics) (2012)

個数:

Sparsity : Graphs, Structures, and Algorithms (Algorithms and Combinatorics) (2012)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 459 p.
  • 言語 ENG
  • 商品コード 9783642427763
  • DDC分類 512.9434

Full Description

This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants.

This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms.

Jaroslav Nešetřil is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris.

This book is related to the material presented by the first author at ICM 2010.

Contents

Part I Presentation: 1. Introduction.- 2. A Few Problems.- 3. Commented Contents.- Part II. The Theory: 4. Prolegomena.- 5. Measuring Sparsity.- 6. Classes and their Classification.- 7. Bounded Height Trees and Tree-Depth.- 8. Decomposition.- 9. Independence.- 10. First-Order Constraint Satisfaction Problems and Homomorphism Dualities.- 11. Restricted Homomorphism Dualities.- 12. Counting.- 13. Back to Classes.- Part III Applications: 14. Classes with Bounded Expansion - Examples.- 15. Property Testing, Hyperfiniteness and Separators.- 16. Algorithmic Applications.- 17. Other Applications.- 18. Conclusion.- Bibliography.- Index.- List of Symbols​.

最近チェックした商品