Fusion Methods for Unsupervised Learning Ensembles (Studies in Computational Intelligence) (2011)

個数:

Fusion Methods for Unsupervised Learning Ensembles (Studies in Computational Intelligence) (2011)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 141 p.
  • 商品コード 9783642423284

Full Description

The application of a "committee of experts" or ensemble learning to artificial neural networks
that apply unsupervised learning techniques is widely considered to enhance the effectiveness
of such networks greatly.
This book examines the potential of the ensemble meta-algorithm by describing and testing a
technique based on the combination of ensembles and statistical PCA that is able to determine
the presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.
Its central contribution concerns an algorithm for the ensemble fusion of topology-preserving
maps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.
The experimental results demonstrate that, in the majority of cases, the WeVoS algorithm
outperforms earlier map-fusion methods and the simpler versions of the algorithm with which
it is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.

Contents

1 Introduction.- 2 Modelling Human Learning: Artificial Neural Networks.- 3 The Committee of Experts Approach: Ensemble Learning.- 4 Use of Ensembles for Outlier Overcoming.- 5 Ensembles of Topology Preserving Maps.- 6 A Novel Fusion Algorithm for Topology-Preserving Maps.-7 Conclusions.

最近チェックした商品