Inductive Logic Programming : 22nd International Conference, ILP 2012, Dubrovnik, Croatia, September 16-18,2012, Revised Selected papers (Lecture Notes in Artificial Intelligence) (2013)

個数:

Inductive Logic Programming : 22nd International Conference, ILP 2012, Dubrovnik, Croatia, September 16-18,2012, Revised Selected papers (Lecture Notes in Artificial Intelligence) (2013)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 273 p.
  • 言語 ENG
  • 商品コード 9783642388118
  • DDC分類 005.115

Full Description

This book constitutes the thoroughly refereed post-proceedings of the 22nd International Conference on Inductive Logic Programming, ILP 2012, held in Dubrovnik, Croatia, in September 2012.

The 18 revised full papers were carefully reviewed and selected from 41 submissions. The papers cover the following topics: propositionalization, logical foundations, implementations, probabilistic ILP, applications in robotics and biology, grammatical inference, spatial learning and graph-based learning.

Contents

A Relational Approach to Tool-Use Learning in Robots.- A Refinement Operator for Inducing Threaded-Variable Clauses.- Propositionalisation of Continuous Attributes beyond Simple Aggregation.- Topic Models with Relational Features for Drug Design.- Pairwise Markov Logic.- Evaluating Inference Algorithms for the Prolog Factor Language.- Polynomial Time Pattern Matching Algorithm for Ordered Graph Patterns.- Fast Parameter Learning for Markov Logic Networks Using Bayes Nets.- Bounded Least General Generalization.- Itemset-Based Variable Construction in Multi-relational Supervised Learning.- A Declarative Modeling Language for Concept Learning in Description Logics.- Identifying Driver's Cognitive Load Using Inductive Logic Programming.- Opening Doors: An Initial SRL Approach.- Probing the Space of Optimal Markov Logic Networks for Sequence Labeling.- What Kinds of Relational Features Are Useful for Statistical Learning?.- Learning Dishonesty.- Heuristic Inverse Subsumption in Full-Clausal Theories.- Learning Unordered Tree Contraction Patterns in Polynomial TimeA Relational Approach to Tool-Use Learning in Robots.- A Refinement Operator for Inducing Threaded-Variable Clauses.- Propositionalisation of Continuous Attributes beyond Simple Aggregation.- Topic Models with Relational Features for Drug Design.- Pairwise Markov Logic.- Evaluating Inference Algorithms for the Prolog Factor Language.- Polynomial Time Pattern Matching Algorithm for Ordered Graph Patterns.- Fast Parameter Learning for Markov Logic Networks Using Bayes Nets.- Bounded Least General Generalization.- Itemset-Based Variable Construction in Multi-relational Supervised Learning.- A Declarative Modeling Language for Concept Learning in Description Logics.- Identifying Driver's Cognitive Load Using Inductive Logic Programming.- Opening Doors: An Initial SRL Approach.- Probing the Space of Optimal Markov Logic Networks for Sequence Labeling.- What Kinds of Relational Features Are Useful for StatisticalLearning?.-Learning Dishonesty.-Heuristic Inverse Subsumption in Full-Clausal Theories.-Learning Unordered Tree Contraction Patterns in Polynomial Time.