Multi-Objective Swarm Intelligent Systems : Theory and Experiences (Studies in Computational Intelligence) 〈Vol. 261〉

個数:
  • ポイントキャンペーン

Multi-Objective Swarm Intelligent Systems : Theory and Experiences (Studies in Computational Intelligence) 〈Vol. 261〉

  • ウェブストア価格 ¥24,004(本体¥21,822)
  • Springer(2010/01発売)
  • 外貨定価 US$ 109.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,090pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 218 p.
  • 言語 ENG
  • 商品コード 9783642051647
  • DDC分類 600

Full Description

Recently, a new class of heuristic techniques, the swarm intelligence has emerged. In this context, more recently, biologists and computer scientists in the ?eld of"arti?cial life"have been turning to insects for ideas that can be used for heuristics. Many aspects of the collective activities of social insects, such as foraging of ants, birds ?ocking and ?sh schooling are self-organizing, meaning that complex group behavior emerges from the interactions of in- viduals who exhibit simple behaviors by themselves. Swarm intelligence is an innovative computational way to solving hard problems. This discipline is mostly inspired by the behavior of ant colonies, bird ?ocks and ?sh schools and other biological creatures. In general, this is done by mimicking the behavior of these swarms. Swarm intelligence is an emerging research area with similar population and evolution characteristics to those of genetic algorithms. However, it di?erentiates in emphasizing the cooperative behavior among group m- bers. Swarm intelligence is used to solve optimization and cooperative pr- lems among intelligent agents, mainly in arti?cial network training, co- erative and/or decentralized control, operational research, power systems, electro-magnetics device design, mobile robotics, and others.
The most we- knownrepresentativesofswarmintelligenceinoptimizationproblemsare:the food-searching behavior of ants, particle swarm optimization, and bacterial colonies. Real-world engineering problems often require concurrent optimization of several design objectives, which are con?icting in most of the cases. Such an optimization is generally called multi-objective or multi-criterion optimi- tion.Inthis context,the developmentofimprovementsfor swarmintelligence methods to multi-objective problems is an emergent research area.

最近チェックした商品