Intelligent and Soft Computing in Infrastructure Systems Engineering : Recent Advances (Studies in Computational Intelligence) 〈Vol. 259〉

個数:

Intelligent and Soft Computing in Infrastructure Systems Engineering : Recent Advances (Studies in Computational Intelligence) 〈Vol. 259〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 326 p.
  • 言語 ENG
  • 商品コード 9783642045851
  • DDC分類 600

Full Description

The term "soft computing" applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli.

Contents

Rapid Interpretation of Nondestructive Testing Results Using Neural Networks.- Probabilistic Inversion: A New Approach to Inversion Problems in Pavement and Geomechanical Engineering.- Neural Networks Application in Pavement Infrastructure Materials.- Backcalculation of Flexible Pavements Using Soft Computing.- Knowledge Discovery and Data Mining Using Artificial Intelligence to Unravel Porous Asphalt Concrete in the Netherlands.- Backcalculation of Pavement Layer Thickness and Moduli Using Adaptive Neuro-fuzzy Inference System.- Case Studies of Asphalt Pavement Analysis/Design with Application of the Genetic Algorithm.- Extended Kalman Filter and Its Application in Pavement Engineering.- Hybrid Stochastic Global Optimization Scheme for Rapid Pavement Backcalculation.- Regression and Artificial Neural Network Modeling of Resilient Modulus of Subgrade Soils for Pavement Design Applications.- Application of Soft Computing Techniques to Expansive Soil Characterization.