Face Image Analysis with Convolutional Neural Networks (Akademische Schriftenreihe V133318) (2009. 196 S. 297 mm)

個数:

Face Image Analysis with Convolutional Neural Networks (Akademische Schriftenreihe V133318) (2009. 196 S. 297 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783640397167

Description


(Text)
Doctoral Thesis / Dissertation from the year 2008 in the subject Computer Science - Applied, grade: 1, University of Freiburg (Lehrstuhl für Mustererkennung und Bildverarbeitung), language: English, abstract: In this work, we present the problem of automatic appearance-based facial analysis with machine learning techniques and describe common specific sub-problems like face detection, facial feature detection and face recognition which are the crucial parts of many applications in the context of indexation, surveillance, access-control or human-computer interaction.To tackle this problem, we particularly focus on a technique called Convolutional Neural Network (CNN) which is inspired by biological evidence found in the visual cortex of mammalian brains and which has already been applied to many different classification problems. Existing CNN-based methods, like theface detection system proposed by Garcia and Delakis, show that this can be a very effective, efficient and robust approach to non-linear image processing tasks.An important step in many automatic facial analysis applications, e.g. face recognition, is face alignment which tries to translate, scale and rotate the face image such that specific facial features are roughly at predefined positions in the image. We propose an efficient approach to this problem using CNNs and experimentally show its very good performance on difficult test images.We further present a CNN-based method for automatic facial feature detection. The proposed system employs a hierarchical procedure which first roughly localizes the eyes, the nose and the mouth and then refines the result by detecting 10 different facial feature points. The detection rate of this method is 96%for the AR database and 87% for the BioID database tolerating an error of 10% of the inter-ocular distance.Finally, we propose a novel face recognition approach based on a specific CNN architecture learning a non-linear mapping of the image space into a lower-dimensional sub-space where the different classes are more easily separable.We applied this method to several public face databases and obtained better recognition rates than with classical face recognition approaches based on PCA or LDA.We also present a CNN-based method for the binary classification problem of gender recognition with face images and achieve a state-of-the-art accuracy.The results presented in this work show that CNNs perform very well on various facial image processing tasks, such as face alignment, facial feature detection and face recognition and clearly demonstrate that the CNN technique is a versatile, efficient and robust approach for facial image analysis.

最近チェックした商品