Gene Selection Based on Consistency Modelling, Algorithms and Applications : Genetic Algorithm Application in Bioinformatics Data Analysis (2008. 112 S. 220 mm)

個数:

Gene Selection Based on Consistency Modelling, Algorithms and Applications : Genetic Algorithm Application in Bioinformatics Data Analysis (2008. 112 S. 220 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 112 p.
  • 商品コード 9783639008838

Description


(Text)
Consistency modeling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of classification or clustering on a training set was often found very different from the same operations on a testing set. Here, the issue is addressed as a consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, a new concept of performance-based consistency is proposed in this thesis. The proposed consistency concept has been investigated on eight benchmark microarray and proteomic datasets. The experimental results show that the different microarray datasets have different consistency characteristics, and that better consistency can lead to an unbiased and reproducible outcome with good disease prediction accuracy.
(Author portrait)
Hu, Yingjie Yingjie(Raphael) Hu received his Master degree (Hons) in Computer and Information Sciences from Auckland University of Technology in 2006. He is a PhD research student at KEDRI under the supervision of Prof. Nikola Kasabov and is currently working on the project of the construction of the integrated intelligent models for data analysis.

最近チェックした商品