Risk Classification by Means of Clustering : Dissertationsschrift (Schriften zum Controlling, Finanz- und Risikomanagement .4) (2010. IV, 195 S. 210 mm)

個数:

Risk Classification by Means of Clustering : Dissertationsschrift (Schriften zum Controlling, Finanz- und Risikomanagement .4) (2010. IV, 195 S. 210 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 195 p.
  • 言語 ENG
  • 商品コード 9783631597590

Full Description

Determining risk-adequate insurance premiums is a core issue in actuarial mathematics. This study is specifically concerned with identifying convenient partitions of (general) insurance collectives such that the resulting tariff classes are homogeneous to a maximum extent and - on the other hand - yet large enough to allow for the occurrence of the group balance concept and to end up with reliable estimates of the moments of the claim size distributions. Therefore, the author develops an innovative classification algorithm utilizing a multidimensional cluster approach combined with credibility-theoretical implications. Its construction stems from involving the entire claim information of risks simultaneously and in a suitable manner, and particulary from obtaining optimality regarding the cluster criterions. Under certain conditions, commonly used cross classification schemes are shown to be a particular case of the new approach. Besides desirable theoretical benefits like its generalizing established cross classification systems, an empirical investigation also suggests the practical superiority of the new algorithm.

Contents

Contents: Application of Cluster Analysis in Actuarial Mathematics - Cross Classification Systems - Development of a New Classification System in order to Partition Insurance Collectives - Empirical Investigation: Comparison of the New Classification Algorithm and Cross Classification.

最近チェックした商品