Applications of Statistical and Machine Learning Methods in Bioinformatics (Advances in Computational and Systems Biology .1) (Neuausg. 2007. 128 S. 210 mm)

個数:

Applications of Statistical and Machine Learning Methods in Bioinformatics (Advances in Computational and Systems Biology .1) (Neuausg. 2007. 128 S. 210 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 128 p.
  • 言語 ENG
  • 商品コード 9783631562215

Description


(Text)
Statistical and machine learning approaches play an increasingly important role in biomedical research. In the absence of fundamental (first principle-based) models, or because of the computational complexity of such models, statistical and machine learning approaches are being used to identify interesting structures in the data (e.g. patterns in gene expression profiles), correlate these patterns and other "input" attributes with (e.g. medically) relevant outcomes, and to develop predictors that can generalize from known data and make predictions for new data instances. Examples of important applications include structural bioinformatics, in which one of the goals is to predict elements of protein structure from amino acid sequence, or microarray gene expression profiling, in which the goal is to discover interesting patterns in gene expression data and correlate them with clinically relevant phenotypes. This volume includes papers submitted to the BIT 2005 workshop on the Applications of Machine and Statistical Learning Methods in Bioinformatics that took place in September 2005 in Torun, Poland.
(Table of content)
Contents: Baoqiang Cao/Mario Medvedovic/Jaroslaw Meller: Prediction of Transmembrane Domains and Pore-facing Residues in Beta-barrel Membrane Proteins - Rafal Adamczak/Lukasz Peplowski/Wieslaw Nowak: Performance of Neural Networks Based Transmembrane Helix Prediction Methods Applied to Mosquito Anopheles Gambiae G-Protein Coupled Odorant Receptors - Frank Emmert-Streib/Matthias Dehmer: A Systems Biology approach for the classification of DNA Microarray Data - Isabelle Rivals/Léon Personnaz: A procedure for the evaluation of the discriminatory power of differentially expressed genes - Davide Anguita/Dario Sterpi: Multiclass SVM for the Classification of Microarray Data - Shiro Usui: Modeling approach and neuroinformatics in vision science - Zvi Boger: Experience in the Applications of Artificial Neural Networks in Bio-Informatics - Jaroslaw Meller/Rafal Adamczak/Michael P. Scola/Michael Barnes/Susan D. Thompson/Murray H. Passo/Hermine I. Brunner/David N. Glass/Alexei A. Grom: Machine Learning Analysis of Expression Profiles of Synovial Tissue Cytokines Helps Identify Patients with Systemic Onset Juvenile Rheumatoid Arthritis - Anil G. Jegga/Jing Chen/Sivakumar Gowrisankar/Mrunal A. Deshmukhl/Bruce J. Aronow: GenomeTrafac: A Wohle-Genome Resource for the Detection of Conserved Transcription Factor Binding Site Motifs and Clusters in Promoters and Flanking Regions of Known Human-Mouse Gene Orthologs.
(Author portrait)
The Editors: Jaroslaw Meller worked at Hebrew University (Israel), Kyoto University (Japan) and Cornell University (USA). At present, he is an Associate Professor in the Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, focusing his research on protein structure and function prediction.
Wieslaw Nowak is a Professor of the Nicholas Copernicus University in Torun (Poland), where he conducts research in the fields of computational biology and chemistry.

最近チェックした商品