Uncertainty Reasoning for the Semantic Web I : ISWC International Workshop, URSW 2005-2007, Revised Selected and Invited Papers (Lecture Notes in Computer Science) 〈Vol. 5327〉

個数:

Uncertainty Reasoning for the Semantic Web I : ISWC International Workshop, URSW 2005-2007, Revised Selected and Invited Papers (Lecture Notes in Computer Science) 〈Vol. 5327〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 403 p.
  • 言語 ENG
  • 商品コード 9783540897644
  • DDC分類 004

Full Description

Thisvolumecontainstheproceedingsofthe?rstthreeworkshopsonUncertainty Reasoning for the Semantic Web (URSW), held at the International Semantic Web Conferences (ISWC) in 2005, 2006, and 2007. In addition to revised and stronglyextendedversionsofselectedworkshoppapers,wehaveincludedinvited contributions from leading experts in the ?eld and closely related areas. With this, the present volume represents the ?rst comprehensive compilation of state-of-the-art research approaches to uncertainty reasoning in the context of the Semantic Web, capturing di?erent models of uncertainty and approaches to deductive as well as inductive reasoning with uncertain formal knowledge. TheWorldWide Web communityenvisionse?ortless interactionbetween- mansandcomputers,seamlessinteroperabilityandinformationexchangeamong Webapplications,andrapidandaccurateidenti?cationandinvocationofapp- priate Web services.As workwith semantics and servicesgrowsmoreambitious, there is increasing appreciation of the need for principled approaches to the f- mal representation of and reasoning under uncertainty.
The term uncertainty is intended here to encompass a variety of forms of incomplete knowledge, - cluding incompleteness, inconclusiveness, vagueness, ambiguity, and others. The termuncertaintyreasoning ismeanttodenotethefullrangeofmethodsdesigned for representing and reasoning with knowledge when Boolean truth values are unknown, unknowable, or inapplicable. Commonly applied approachesto unc- tainty reasoning include probability theory, Dempster-Shafer theory, fuzzy logic and possibility theory, and numerous other methodologies. A few Web-relevant challenges which are addressed by reasoning under - certainty include: Uncertaintyofavailableinformation: MuchinformationontheWorldWide Web is uncertain. Examples include weather forecasts or gambling odds. Canonical methods for representing and integrating such information are necessaryforcommunicating it ina seamlessfashion.

Contents

Probabilistic and Dempster-Shafer Models.- Just Add Weights: Markov Logic for the Semantic Web.- Semantic Science: Ontologies, Data and Probabilistic Theories.- Probabilistic Dialogue Models for Dynamic Ontology Mapping.- An Approach to Probabilistic Data Integration for the Semantic Web.- Rule-Based Approaches for Representing Probabilistic Ontology Mappings.- PR-OWL: A Bayesian Ontology Language for the Semantic Web.- Discovery and Uncertainty in Semantic Web Services.- An Approach to Description Logic with Support for Propositional Attitudes and Belief Fusion.- Using the Dempster-Shafer Theory of Evidence to Resolve ABox Inconsistencies.- An Ontology-Based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines.- Fuzzy and Possibilistic Models.- A Crisp Representation for Fuzzy with Fuzzy Nominals and General Concept Inclusions.- Optimizing the Crisp Representation of the Fuzzy Description Logic .- Uncertainty Issues and Algorithms in Automating Process Connecting Web and User.- Granular Association Rules for Multiple Taxonomies: A Mass Assignment Approach.- A Fuzzy Semantics for the Resource Description Framework.- Reasoning with the Fuzzy Description Logic f- : Theory, Practice and Applications.- Inductive Reasoning and Machine Learning.- Towards Machine Learning on the Semantic Web.- Using Cognitive Entropy to Manage Uncertain Concepts in Formal Ontologies.- Analogical Reasoning in Description Logics.- Approximate Measures of Semantic Dissimilarity under Uncertainty.- Ontology Learning and Reasoning — Dealing with Uncertainty and Inconsistency.- Hybrid Approaches.- Uncertainty Reasoning for Ontologies with General TBoxes in Description Logic.

最近チェックした商品