Learning Theory : 20th Annual Conference on Learning Theory, Colt 2007, San Diego, Proceedings (Lecture Notes in Computer Science) 〈Vol. 4539〉

個数:

Learning Theory : 20th Annual Conference on Learning Theory, Colt 2007, San Diego, Proceedings (Lecture Notes in Computer Science) 〈Vol. 4539〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 634 p.
  • 言語 ENG
  • 商品コード 9783540729259
  • DDC分類 004

基本説明

Topics: unsupervised, semisupervised and active learning, statistical learning theory, inductive inference, regularized learning, kernel methods, SVM, online and reinforcement learning, learning algorithms and limitations on learning, dimensionality reduction, other approaches, and open problems.

Full Description

This book constitutes the refereed proceedings of the 20th Annual Conference on Learning Theory, COLT 2007, held in San Diego, CA, USA in June 2007. It covers unsupervised, semisupervised and active learning, statistical learning theory, inductive inference, regularized learning, kernel methods, SVM, online and reinforcement learning, learning algorithms and limitations on learning, dimensionality reduction, as well as open problems.

Contents

Invited Presentations.- Property Testing: A Learning Theory Perspective.- Spectral Algorithms for Learning and Clustering.- Unsupervised, Semisupervised and Active Learning I.- Minimax Bounds for Active Learning.- Stability of k-Means Clustering.- Margin Based Active Learning.- Unsupervised, Semisupervised and Active Learning II.- Learning Large-Alphabet and Analog Circuits with Value Injection Queries.- Teaching Dimension and the Complexity of Active Learning.- Multi-view Regression Via Canonical Correlation Analysis.- Statistical Learning Theory.- Aggregation by Exponential Weighting and Sharp Oracle Inequalities.- Occam's Hammer.- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector.- Suboptimality of Penalized Empirical Risk Minimization in Classification.- Transductive Rademacher Complexity and Its Applications.- Inductive Inference.- U-Shaped, Iterative, and Iterative-with-Counter Learning.- Mind Change Optimal Learning of Bayes Net Structure.- Learning Correction Grammars.- Mitotic Classes.- Online and Reinforcement Learning I.- Regret to the Best vs. Regret to the Average.- Strategies for Prediction Under Imperfect Monitoring.- Bounded Parameter Markov Decision Processes with Average Reward Criterion.- Online and Reinforcement Learning II.- On-Line Estimation with the Multivariate Gaussian Distribution.- Generalised Entropy and Asymptotic Complexities of Languages.- Q-Learning with Linear Function Approximation.- Regularized Learning, Kernel Methods, SVM.- How Good Is a Kernel When Used as a Similarity Measure?.- Gaps in Support Vector Optimization.- Learning Languages with Rational Kernels.- Generalized SMO-Style Decomposition Algorithms.- Learning Algorithms and Limitations on Learning.- Learning Nested Halfspaces and UphillDecision Trees.- An Efficient Re-scaled Perceptron Algorithm for Conic Systems.- A Lower Bound for Agnostically Learning Disjunctions.- Sketching Information Divergences.- Competing with Stationary Prediction Strategies.- Online and Reinforcement Learning III.- Improved Rates for the Stochastic Continuum-Armed Bandit Problem.- Learning Permutations with Exponential Weights.- Online and Reinforcement Learning IV.- Multitask Learning with Expert Advice.- Online Learning with Prior Knowledge.- Dimensionality Reduction.- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections.- Sparse Density Estimation with ?1 Penalties.- ?1 Regularization in Infinite Dimensional Feature Spaces.- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking.- Other Approaches.- Observational Learning in Random Networks.- The Loss Rank Principle for Model Selection.- Robust Reductions from Ranking to Classification.- Open Problems.- Rademacher Margin Complexity.- Open Problems in Efficient Semi-supervised PAC Learning.- Resource-Bounded Information Gathering for Correlation Clustering.- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation?.- When Is There a Free Matrix Lunch?.

最近チェックした商品