Rough-Granular Computing in Knowledge Discovery and Data Mining (Studies in Computational Intelligence) 〈Vol. 152〉

個数:

Rough-Granular Computing in Knowledge Discovery and Data Mining (Studies in Computational Intelligence) 〈Vol. 152〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 158 p.
  • 言語 ENG
  • 商品コード 9783540708001
  • DDC分類 511

Full Description

If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would su?ce to take their pencils in their hands, and say to each other: 'Let us calculate'. Gottfried Wilhelm Leibniz (1646-1716) Dissertio de Arte Combinatoria (Leipzig, 1666) GottfriedWilhelm Leibniz, oneofthe greatestmathematicians,discussedcalculi ofthoughts. Onlymuchlater,did it becomeevidentthat newtools arenecessary for developing such calculi, e. g. , due to the necessity of reasoning under unc- tainty about objects and (vague) concepts. Fuzzy set theory (Lot? A. Zadeh, 1965) and rough set theory (Zdzisla w Pawlak, 1982) represent two di?erent - proaches to vagueness. Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy membership, whereas rough set theory addresses gra- larity of knowledge, expressed by the indiscernibility relation. Granular comp- ing (Zadeh,1973,1998)iscurrentlyregardedasa uni?edframeworkfor theories, methodologies and techniques for modeling calculi of thoughts, based on objects called granules.
The book "Rough-Granular Computing in Knowledge Discovery and Data Mining" written by ProfessorJaroslawStepaniuk is dedicated to methods based on a combination of the following three closely related and rapidly growing - eas: granular computing, rough sets, and knowledge discovery and data mining (KDD). In the book, the KDD foundations based on the rough set approach and granular computing are discussed together with illustrative applications. In searching for relevant patterns or in inducing (constructing) classi?ers in KDD, di?erent kinds of granulesaremodeled. In this modeling process, granulescalled approximation spaces play a special rule.

Contents

I: Rough Set Methodology.- Rough Sets.- Data Reduction.- II: Classification and Clustering.- Selected Classification Methods.- Selected Clustering Methods.- A Medical Case Study.- III: Complex Data and Complex Concepts.- Mining Knowledge from Complex Data.- Complex Concept Approximations.- IV: Conclusions, Bibliography and Further Readings.- Concluding Remarks.

最近チェックした商品