Algorithmic Learning Theory, ALT '95 : International Workshop ALT '95, Fukuoka, Japan, October 18-20, 1995 Proceedings (Lecture Notes in Computer Science Vol.997) (1995. XV, 319 p. 23,5 cm)

個数:
  • ポイントキャンペーン

Algorithmic Learning Theory, ALT '95 : International Workshop ALT '95, Fukuoka, Japan, October 18-20, 1995 Proceedings (Lecture Notes in Computer Science Vol.997) (1995. XV, 319 p. 23,5 cm)

  • ウェブストア価格 ¥13,156(本体¥11,960)
  • SPRINGER, BERLIN(1995発売)
  • 外貨定価 EUR 53.49
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 595pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • ウェブストア価格 ¥11,303(本体¥10,276)
  • SPRINGER, BERLIN(1995発売)
  • 外貨定価 US$ 54.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 510pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 320 p.
  • 商品コード 9783540604549

基本説明

Lecture Notes in Artificial Intelligence.

Full Description

This book constitutes the refereed proceedings of the 6th International Workshop on Algorithmic Learning Theory, ALT '95, held in Fukuoka, Japan, in October 1995.
The book contains 21 revised full papers selected from 46 submissions together with three invited contributions. It covers all current areas related to algorithmic learning theory, in particular the theory of machine learning, design and analysis of learning algorithms, computational logic aspects, inductive inference, learning via queries, artificial and biologicial neural network learning, pattern recognition, learning by analogy, statistical learning, inductive logic programming, robot learning, and gene analysis.

Contents

Grammatical inference: An old and new paradigm.- Efficient learning of real time one-counter automata.- Learning strongly deterministic even linear languages from positive examples.- Language learning from membership queries and characteristic examples.- Learning unions of tree patterns using queries.- Inductive constraint logic.- Incremental learning of logic programs.- Learning orthogonal F-Horn formulas.- Learning nested differences in the presence of malicious noise.- Learning sparse linear combinations of basis functions over a finite domain.- Inferring a DNA sequence from erroneous copies (abstract).- Machine induction without revolutionary paradigm shifts.- Probabilistic language learning under monotonicity constraints.- Noisy inference and oracles.- Simulating teams with many conjectures.- Complexity of network training for classes of Neural Networks.- Learning ordered binary decision diagrams.- Simple PAC learning of simple decision lists.- The complexity of learning minor closed graph classes.- Technical and scientific issues of KDD (or: Is KDD a science?).- Analogical logic program synthesis algorithm that can refute inappropriate similarities.- Reflecting and self-confident inductive inference machines.- On approximately identifying concept classes in the limit.- Application of kolmogorov complexity to inductive inference with limited memory.

最近チェックした商品