FastSLAM : A Factored Solution to the Simultaneous Localization and Mapping Problem (Springer Tracts in Advanced Robotics) 〈Vol. 27〉

個数:

FastSLAM : A Factored Solution to the Simultaneous Localization and Mapping Problem (Springer Tracts in Advanced Robotics) 〈Vol. 27〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 120 p.
  • 言語 ENG
  • 商品コード 9783540463993
  • DDC分類 005

Full Description

This monograph describes a new family of algorithms for the simultaneous localization and mapping problem in robotics (SLAM). SLAM addresses the problem of acquiring an environment map with a roving robot, while simultaneously localizing the robot relative to this map. This problem has received enormous attention in the robotics community in the past few years, reaching a peak of popularity on the occasion of the DARPA Grand Challenge in October 2005, which was won by the team headed by the authors. The FastSLAM family of algorithms applies particle filters to the SLAM Problem, which provides new insights into the data association problem that is paramount in SLAM. The FastSLAM-type algorithms have enabled robots to acquire maps of unprecedented size and accuracy, in a number of robot application domains and have been successfully applied in different dynamic environments, including the solution to the problem of people tracking.

Contents

1 Introduction.- Applications of SLAM, Joint Estimation, Posterior Estimation, The Extended Kalman Filter, Structure and Sparsity in SLAM, FastSLAM, Outline.- 2 The SLAM Problem.- Problem Definition, SLAM Posterior, SLAM as a Markov Chain, Extended Kalman Filtering, Scaling SLAM Algorithms, Robust Data Association, Comparison of FastSLAM to Existing Techniques.- 3 FastSLAM 1.0.- Particle Filtering, Factored Posterior Representation, The FastSLAM 1.0 Algorithm, FastSLAM with Unknown Data Association, Summary of the FastSLAM Algorithm, FastSLAM Extensions, Log(N) FastSLAM, Experimental Results, Summary.- 4 FastSLAM 2.0.- Sample Impoverishment, FastSLAM 2.0, FastSLAM 2.0 Convergence, Experimental Results, Grid-based FastSLAM, Summary.- 5 Dynamic Environments.- SLAM With Dynamic Landmarks, Simultaneous Localization and People Tracking, FastSLAP Implementation,Experimental Results, Summary.- 6 Conclusions.- Conclusions, Future Work.- References, Index.

最近チェックした商品