Electrodynamics of Magnetoactive Media (Springer Series in Solid-State Sciences Vol.135) (2004. XIII, 422 p. w. 97 figs. 24 cm)

個数:

Electrodynamics of Magnetoactive Media (Springer Series in Solid-State Sciences Vol.135) (2004. XIII, 422 p. w. 97 figs. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 550 p.
  • 商品コード 9783540436942

Full Description


The main part of the book describes the behaviour of a charged particle in an electromagnetic field, and the electrodynamics of plasmas, liquid crystals and superconductors. These very different subjects have an important common feature, namely the fundamental role played by the magnetic field. Plasmas, liquid crystals and superconductors can be considered as magnetoactive media, because their electromagnetic characteristics are strongly affected by an external magnetic field.

Table of Contents

1 Fundamentals of Electrodynamics                  1  (28)
1.1 Charges and Fields 1 (3)
1.2 Maxwell Equations 4 (9)
1.2.1 Maxwell Equations in the Differential 4 (3)
Form
1.2.2 Maxwell Equations in the Integral Form 7 (2)
1.2.3 Field Potentials 9 (4)
1.3 Relativistic Properties of the Maxwell 13 (9)
Equations
1.3.1 Lorentz Transformation of Coordinates 13 (2)
1.3.2 Four-Dimensional Form of the Maxwell 15 (4)
Equations
1.3.3 Lorentz Transformation of 19 (3)
Electromagnetic Field 4-Tensor
1.4 Lagrangian Formalism 22 (7)
1.4.1 Action Functional 22 (5)
1.4.2 Field Equations 27 (2)
2 Magnetostatics 29 (39)
2.1 Fundamentals of Magnetostatics 29 (16)
2.1.1 Constant Magnetic Field 29 (7)
2.1.2 Magnetic Moment of a System of 36 (1)
Currents
2.1.3 Energetic Characteristics of a Static 37 (3)
Magnetic Field
2.1.4 Forces in a Magnetic Field 40 (5)
2.2 Magnetic Field of a Given Current 45 (23)
Distribution
2.2.1 Magnetic Field of Linear Currents 45 (4)
2.2.2 Magnetic Field of a Contour with a 49 (3)
Current
2.2.3 A Cylinder in an External Magnetic 52 (6)
Field
2.2.4 Magnetic Field of a Solenoid 58 (5)
2.2.5 Magnetic Field of a Torus 63 (1)
2.2.6 Magnetic Field of a Rotating Charged 64 (4)
Sphere
3 Quasi-static Electromagnetic Field 68 (14)
3.1 Conductors in a Variable Magnetic Field 68 (7)
3.1.1 Basic Equations 68 (3)
3.1.2 Eddy Currents 71 (2)
3.1.3 Skin Effect 73 (2)
3.2 Quasi-steady Current Circuit 75 (3)
3.3 Electromagnetic Induction Law 78 (4)
4 Electromagnetic Waves 82 (111)
4.1 Electromagnetic Waves in a Dielectric 82 (3)
4.2 Plane Waves 85 (2)
4.3 Monochromatic Plane Waves 87 (2)
4.4 Polarization of a Monochromatic Plane Wave 89 (3)
4.5 Reflection and Refraction of 92 (6)
Electromagnetic Waves
4.6 Electromagnetic Waves in Anisotropic Media 98 (16)
4.6.1 Plane Wave in an Anisotropic Medium 98 (7)
4.6.2 Optical Properties of Uniaxial 105(3)
Crystals
4.6.3 Birefringence in an Electric Field 108(1)
4.6.4 Magnetic-Optical Effects 109(5)
4.7 Electromagnetic Waves in Dispersive Media 114(16)
4.7.1 Dispersion of the Dielectric 114(4)
Permittivity
4.7.2 Field Energy in Dispersive Media 118(3)
4.7.3 The Kramers and Kronig's Relations 121(7)
4.7.4 Dispersion Relation for a 128(2)
Monochromatic Plane Wave
4.8 Electromagnetic Wave Propagation in 130(22)
Guiding Systems
4.8.1 Hollow Wave-Guides 130(4)
4.8.2 Rectangular Waveguides 134(4)
4.8.3 Energy Absorption in Waveguides 138(2)
4.8.4 Optical Dielectric Waveguides 140(5)
4.8.5 Cavity Resonators 145(7)
5 Charged Particle in Electromagnetic Field 152(41)
5.1 Equations of Motion 152(1)
5.2 Energy of Particles and Fields 153(3)
5.3 A Charged Particle Motion in Static 156(8)
Uniform Fields
5.3.1 Static Uniform Magnetic Field 156(3)
5.3.2 Adiabatic Invariance 159(2)
5.3.3 Static Uniform Electric Field 161(1)
5.3.4 Combined Static Uniform Electric 162(2)
and Magnetic Fields
5.4 Hall Effect in Semiconductors 164(5)
5.5 A Charged Particle Motion in Static 169(11)
Non-uniform Magnetic Fields
5.5.1 Gradient Drift 170(1)
5.5.2 Centrifugal Drift 171(3)
5.5.3 Magnetic Mirrors 174(6)
5.6 A Charged Particle Motion in Static 180(2)
Non-uniform Electric Field
5.7 A Charged Particle Motion in Time 182(13)
Dependent Fields
5.7.1 Time-Dependent Uniform Magnetic 182(4)
Field
5.7.2 Static Magnetic and Uniform 186(7)
Time-Dependent Electric Field
6. Current Instabilities 193(43)
6.1 General Approach 193(2)
6.2 Criteria of Instability Classification 195(9)
6.2.1 Criteria of Absolute and Convective 195(6)
Instability
6.2.2 Criterion of a Spatial Amplification 201(3)
6.3 Analysis of Dispersion Equation for Two 204(3)
Coupled Waves
6.4 Transformation of Instabilities 207(3)
6.5 Instabilities in Solid State Plasma 210(26)
6.5.1 Parameters of Solid State Plasma 210(3)
6.5.2 Quasineutral Oscillations in 213(4)
Semiconductors
6.5.3 Gradient Instability with Two Types 217(7)
of Carriers
6.5.4 Instability in a Semiconductor with 224(2)
Three Types of Carriers
6.5.5 Parametric Excitation of the 226(3)
Instability
6.5.6 Helicoidal Instability in 229(7)
Semiconductors
7 Waves in Plasma 236(57)
7.1 Hydrodynamic Model 236(3)
7.2 Waves in One Component Electron Plasma 239(19)
7.2.1 General Dispersion Relations 239(4)
7.2.2 Conductivity Tensor in a Local 243(2)
Approximation
7.2.3 Plasmons 245(5)
7.2.4 Ordinary and Extraordinary 250(3)
Electromagnetic Waves
7.2.5 Helicons 253(5)
7.3 Waves in Two Component Plasma 258(10)
7.3.1 Ion Acoustic Waves 258(3)
7.3.2 Electrostatic Ion Waves 261(3)
7.3.3 Alfven Waves 264(2)
7.3.4 Magnetosonic Waves 266(2)
7.4 Excitation of Transverse Waves in Indium 268(5)
Antimonide
7.5 Kinetic Theory 273(20)
7.5.1 The Boltzmann-Vlasov Equation 273(4)
7.5.2 Landau Damping 277(5)
7.5.3 Permittivity Tensor in a Non-local 282(6)
Case
7.5.4 Helicon Dispersion in a Non-local Case 288(5)
8 Electrodynamics of Liquid Crystals 293(44)
8.1 Classification and Fundamental Properties 293(4)
of Liquid Crystals
8.2 Liquid Crystals in a Static Magnetic Field 297(18)
8.2.1 Continuum Theory of Liquid Crystals 297(3)
8.2.2 Nematic Liquid Crystal in a Static 300(9)
Magnetic Field
8.2.3 Cholesteric Liquid Crystal in a 309(4)
Static Magnetic Field
8.2.4 Helfrich-Hurault Effect in Smectic A 313(2)
Liquid Crystals
8.3 Electrohydrodynamic Instabilities in 315(11)
Nematic Liquid Crystals
8.3.1 Domain Formation in an External 315(2)
Electric Field
8.3.2 General System of Equations 317(4)
8.3.3 Excitations with a DC Electric Field 321(2)
8.3.4 Excitation with AC Electric Field 323(3)
8.4 Excitation of Second Sound in a Smectic A 326(5)
Liquid Crystal
8.5 Electromagnetic Wave Propagation in a 331(6)
Cholesteric Liquid Crystal
9 Electrodynamics of Superconductors 337(64)
9.1 Superconducting Current 337(4)
9.2 The Meissner Effect and Penetration Depth 341(7)
9.3 Magnetic Flux in a Superconducting Ring 348(3)
9.4 Examples of a DC Regime in a 351 (6)
Superconductor
9.4.1 Junction between a Normal Conductor 351(2)
and a Superconductor
9.4.2 Electrostatic Analogy 353(2)
9.4.3 Inductance of a Superconducting Thin 355(2)
Strip
9.5 Phenomena in a Superconductor under AC 357(9)
Regime
9.5.1 The Phenomenological Two-Fluid Model 357(3)
9.5.2 Surface Impedance 360 (6)
9.5.3 Superconducting Transmission Lines
and Microwave Cavities 361
9.6 The Ginzburg-Landau Theory 366(11)
9.6.1 The Ginzburg-Landau Equations 366(3)
9.6.2 Examples of Ginzburg-Landau Theory 369(4)
Application
9.6.3 Surface Energy at the Boundary 373(4)
between Normal Conductor and Superconductor
9.7 Type II Superconductors 377(11)
9.7.1 Mixed State 377(2)
9.7.2 London Model of the Mixed State 379(2)
9.7.3 Vortex Energy 381(1)
9.7.4 Vortex Lattice 382(1)
9.7.5 Upper Critical Field 383(2)
9.7.6 Vortex Motion 385(3)
9.8 The Josephson Effect 388(16)
9.8.1 The Josephson Relations 388 (3)
9.8.2 Spatial Variation of the Phase 391(3)
Difference in a Magnetic Field
9.8.3 Current Dependence on a Magnetic Field 394(1)
9.8.4 Wave Equation for a Josephson Junction 395(6)
A The List of Notations 401(3)
B Formulae of Vector Analysis 404(4)
B.1 Vector Operations in the Cartesian 404(1)
Coordinates
B.2 Vector Operations in Cylindrical 405(1)
Coordinates
B.3 Vector Operations in Spherical Coordinates 405(1)
B.4 Vector Analysis Identities 406(2)
C The Physical Constants 408(1)
D The MKS System of Units 409(8)
References 417(4)
Index 421