Fatigue in Ferroelectric Ceramics and Related Issues (Springer Series in Materials Science Vol.61) (2004. 210 p. w. 80 ill.)

個数:

Fatigue in Ferroelectric Ceramics and Related Issues (Springer Series in Materials Science Vol.61) (2004. 210 p. w. 80 ill.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 210 p.
  • 商品コード 9783540402350

Full Description


A major barrier to the introduction of ferroelectric devices into mass markets remains their limited reliability due to fatigue. The underlying physical and chemical mechanisms of this material fatigue phenomenon are extremely complex, and the relevant influences range from single-point defects to macroscopic boundary conditions. This book summarizes the different aspects of fatigue in ferroelectrics. It is primarily concerned with bulk material effects. Mechanical, electrical, and physico-chemical processes are described; reference data are given for different loading regimes and boundary conditions; and various fatigue models are compared. The monograph also demonstrates how the results of acoustic emission and of microscopy studies reveal the microscopic origins of fatigue in ferroelectric devices.

Table of Contents

Symbols and Abbreviations                          xv
1 Introduction 1 (40)
1.1 Document Structure 1 (1)
1.2 Fatigue 1 (1)
1.3 Historical 2 (2)
1.4 Ferroclectricity and Piezoelectricity 4 (4)
1.5 The Lead-Zirconatc-Titanate Crystal 8 (6)
System
1.5.1 Dopants 8 (2)
1.5.2 PIC 151 10 (1)
1.5.3 Lanthanum Doped PZT 11 (3)
1.6 Defects in PZT 14 (4)
1.6.1 Vacancies and Interstitials 14 (1)
1.6.2 Thermal Equilibrium 14 (2)
1.6.3 The Quenched State 16 (2)
1.7 Macroscopic Fatigue 18 (2)
1.8 Point Defects and Fatigue 20 (3)
1.9 Domain Pinning, Aging, and Imprint 23 (4)
1.10 Electrodes and Thin Films 27 (5)
1.11 Crystal- and Microstructure 32 (1)
1.12 Temperature Dependence of Fatigue 33 (1)
1.13 Switching, Relaxation, and Rate 34 (1)
Dependencies
1.14 Microcracking 35 (1)
1.15 Models 36 (3)
1.16 Fatigue-Free Systems 39 (2)
2 Macroscopic Phenomenology 41 (22)
2.1 Fatigue axed Measurement Procedures 41 (2)
2.2 Polarization and Strain Loss 43 (3)
2.3 Asymmetry and Offset-Polarization 46 (5)
2.3.1 Strain Asymmetry 46 (2)
2.3.2 Obstacles to 90ー Domain Switching 48 (3)
2.4 Anisotropy 51 (4)
2.5 Leakage Current, Sample Coloring, and 55 (2)
Relaxation
2.6 Unipolar Fatigue 57 (1)
2.7 Mixed Loading Fatigue 58 (5)
3 Agglomeration and Microstructural Effects 63 (18)
3.1 Agglomerates 63 (1)
3.2 Grain Boundaries 63 (7)
3.3 Agglomeration and Crystal Structure 70 (2)
3.4 Domain Structure 72 (1)
3.5 Unit Cell Volume 73 (1)
3.6 The Oxygen Balance 74 (1)
3.7 Microcracking 75 (3)
3.7.1 Edge Effects 76 (1)
3.7.2 Bulk Microcracking 77 (1)
3.8 Macrocracking, Delamination Fracture 78 (3)
4 Acoustic Emission and Barkhausen Pulses 81 (30)
4.1 Acoustic Emission Technique 81 (3)
4.1.1 Principle 81 (1)
4.1.2 Instrumentation 82 (2)
4.2 Polycrystalline Lead-Zirconate-Titanate 84 (17)
4.2.1 Acoustic Emission Sources 84 (1)
4.2.2 Different Crystal Structures of 85 (11)
PZT
4.2.3 Fatigue Induced Discontinuities 96 (1)
4.2.4 Acoustic Emissions under Uniaxial 97 (4)
Stress
4.3 Single Crystal Ferroelectrics 101(10)
4.3.1 The Uniaxial Ferroelectric 101(6)
Gadolinium Molybdate
4.3.2 The Perovskite Type Barium 107(4)
Titanate
5 Models and Mechanisms 111(56)
5.1 Fatigue Models for a Polycrystalline 111(3)
Ferroelectric
5.2 Band Structure 114(2)
5.3 Point Defects and Dipoles 116(5)
5.3.1 Concentration 116(1)
5.3.2 Defects and Microdomains 117(1)
5.3.3 Localized Electron States 118(3)
5.3.4 Defect Dipoles 121(1)
5.4 Ion and Electron Motion 121(9)
5.1.1 Diffusion Within a Domain 121(1)
5.4.2 Anisotropy and Directionality of 122(6)
Diffusion
5.4.3 Drift and Convection 128(1)
5.4.4 Directionality of Electron Motion 129(1)
5.4.5 Average Conductivities 129(1)
5.5 Screening, Space Charges, and Domain 130(4)
Freezing
5.6 Electrodes 134(2)
5.7 Grain Boundaries 136(1)
5.8 Agglomeration 137(24)
5.8.1 Point Defect Sinks 137(2)
5.8.2 Dislocation Loop Formation at Low 139(5)
PO2
5.8.3 Induced Crystallographic Phase 144(2)
Change
5.8.4 Iterative Models in General 146(5)
5.8.5 Iterative Model of Bulk 151(8)
Agglomeration
5.8.6 Rapid Fatigue due to Polarons 159(2)
5.9 Crystallite Orientation and Anisotropies 161(3)
5.10 Relaxation Times 164(1)
5.11 Unclear Effects 164(3)
6 Recent Developments 167(20)
6.1 Material Modifications 167(3)
6.1.1 Excess and Deficient Lead Oxide 167(1)
6.1.2 Doping 168(1)
6.1.3 Secondary Bulk Phases 168(1)
6.1.4 Reduction of PZT, SBT, and BiT 169(1)
6.2 Grain Boundary and Grain Size 170(1)
6.2.1 Grain Boundary 170(1)
6.2.2 Grain Size 170(1)
6.3 Several Layers of Different Composition 171(1)
6.3.1 Lead Excess Layers Near the 171(1)
Electrode
6.3.2 Multiple 171(1)
Ferroelectric/Antiferroelectric Layers,
Buffer Layers
6.4 New or Modified Modelling Approaches 172(4)
6.4.1 Relation to aging 172(1)
6.4.2 Ising and Preisach Approach 172(1)
6.4.3 Phase Transition Picture 173(1)
6.4.4 Supplemental Arguments to 173(3)
Previous Chapters
6.4.5 Curved Domain Walls 176(1)
6.4.6 Other Approaches 176(1)
6.5 Leakage Current 176(2)
6.5.1 Ionic Currents 176(1)
6.5.2 Electronic States 177(1)
6.5.3 Breakdown 178(1)
6.6 Mechanical Effects 178(2)
6.6.1 Mechanical Fatigue 178(1)
6.6.2 Microcracking 179(1)
6.7 Anisotropy of Fatigue 180(1)
6.8 Time and Relaxation Effects 180(2)
6.9 Electrode Geometry 182(1)
6.10 Layered Perovskite Ferroelectrics 182(3)
6.10.1 Strontium Bismuth Tantalate 182(2)
6.10.2 Bismuth Titanate 184(1)
6.11 Uniaxial Ferroelectrics 185(2)
7 Summary 187(6)
A Solutions to Integrals 193(2)
References 195(26)
Index 221