Knowledge Discovery in Inductive Databases : 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Pap

個数:

Knowledge Discovery in Inductive Databases : 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Pap

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9783540332923
  • DDC分類 005

Full Description

The4thInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2005) was held in Porto, Portugal, on October 3, 2005 in conjunction with the 16th European Conference on Machine Learning and the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. Ever since the start of the ?eld of data mining, it has been realized that the integration of the database technology into knowledge discovery processes was a crucial issue. This vision has been formalized into the inductive database perspective introduced by T. Imielinski and H. Mannila (CACM 1996, 39(11)). The main idea is to consider knowledge discovery as an extended querying p- cess for which relevant query languages are to be speci?ed. Therefore, inductive databases might contain not only the usual data but also inductive gener- izations (e. g. , patterns, models) holding within the data. Despite many recent developments, there is still a pressing need to understand the central issues in inductive databases. Constraint-based mining has been identi?ed as a core technology for inductive querying, and promising results have been obtained for rather simple types of patterns (e. g. , itemsets, sequential patterns). However, constraint-based mining of models remains a quite open issue. Also, coupling schemes between the available database technology and inductive querying p- posals are not yet well understood. Finally, the de?nition of a general purpose inductive query language is still an on-going quest.

Contents

Invited Papers.- Data Mining in Inductive Databases.- Mining Databases and Data Streams with Query Languages and Rules.- Contributed Papers.- Memory-Aware Frequent k-Itemset Mining.- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data.- Experiment Databases: A Novel Methodology for Experimental Research.- Quick Inclusion-Exclusion.- Towards Mining Frequent Queries in Star Schemes.- Inductive Databases in the Relational Model: The Data as the Bridge.- Transaction Databases, Frequent Itemsets, and Their Condensed Representations.- Multi-class Correlated Pattern Mining.- Shaping SQL-Based Frequent Pattern Mining Algorithms.- Exploiting Virtual Patterns for Automatically Pruning the Search Space.- Constraint Based Induction of Multi-objective Regression Trees.- Learning Predictive Clustering Rules.

最近チェックした商品