GL(2)のための局所ラングランズ予想<br>The Local Langlands Conjecture for GL(2) (Grundlehren der mathematischen Wissenschaften Bd.335) (2006. 350 p. 23,5 cm)

GL(2)のための局所ラングランズ予想
The Local Langlands Conjecture for GL(2) (Grundlehren der mathematischen Wissenschaften Bd.335) (2006. 350 p. 23,5 cm)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 375 p.
  • 商品コード 9783540314868

基本説明

Gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.

Full Description

If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory.

This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groupsand the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups.

Contents

Smooth Representations.- Finite Fields.- Induced Representations of Linear Groups.- Cuspidal Representations.- Parametrization of Tame Cuspidals.- Functional Equation.- Representations of Weil Groups.- The Langlands Correspondence.- The Weil Representation.- Arithmetic of Dyadic Fields.- Ordinary Representations.- The Dyadic Langlands Correspondence.- The Jacquet-Langlands Correspondence.

最近チェックした商品