量子開放系I<br>Open Quantum Systems I : The Hamilton Approach (Lecture Notes in Mathematics) 〈Vol. 1880〉

個数:

量子開放系I
Open Quantum Systems I : The Hamilton Approach (Lecture Notes in Mathematics) 〈Vol. 1880〉

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 330 p.
  • 商品コード 9783540309918

基本説明

In Volume I the Hamiltonian description of quantum open systems is discussed.

Full Description

This is the ?rst in a series of three volumes dedicated to the lecture notes of the Summer School "Open Quantum Systems" which took place at the Institut Fourier in Grenoble from June 16th to July 4th 2003. The contributions presented in these volumes are revised and expanded versions of the notes provided to the students during the School. Closed vs. Open Systems By de?nition, the time evolution of a closed physical systemS is deterministic. It is usually described by a differential equation x ? = X(x ) on the manifold M of t t possible con?gurations of the system. If the initial con?guration x ? M is known 0 then the solution of the corresponding initial value problem yields the con?guration x at any future time t. This applies to classical as well as to quantum systems. In the t classical case M is the phase space of the system and x describes the positions and t velocities of the various components (or degrees of freedom) ofS at time t. Inthe quantum case, according to the orthodoxinterpretation of quantum mechanics, M is a Hilbert space and x a unit vector - the wave function - describing the quantum t state of the system at time t. In both cases the knowledge of the state x allows t to predict the result of any measurement made onS at time t.

Contents

to the Theory of Linear Operators.- to Quantum Statistical Mechanics.- Elements of Operator Algebras and Modular Theory.- Quantum Dynamical Systems.- The Ideal Quantum Gas.- Topics in Spectral Theory.

最近チェックした商品