Applications of Learning Classifier Systems (Studies in Fuzziness and Soft Computing Vol.150) (2004. VIII, 305 p.)

個数:

Applications of Learning Classifier Systems (Studies in Fuzziness and Soft Computing Vol.150) (2004. VIII, 305 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 305 p.
  • 商品コード 9783540211099

基本説明

Demonstrates the utility of this machine learning technique in recent real-world applications in such domains as data mining, modelling and optimization, and control.

Full Description

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw and his work prefigured such present day domains as reinforcement learning and embedded agents that are now displacing the older "standard Af' . One focus was what Holland called "classifier systems": sets of competing rule­ like "classifiers", each a hypothesis as to how best to react to some aspect of the environment--or to another rule. The system embracing such a rule "popu­ lation" would explore its available actions and responses, rewarding and rating the active rules accordingly. Then "good" classifiers would be selected and re­ produced, mutated and even crossed, a la Darwin and genetics, steadily and reliably increasing the system's ability to cope.

Contents

Learning Classifier Systems: A Brief Introduction.- Section 1 — Data Mining.- Data Mining using Learning Classifier Systems.- NXCS Experts for Financial Time Series Forecasting.- Encouraging Compact Rulesets from XCS for Enhanced Data Mining.- Section 2 — Modelling and Optimization.- The Fighter Aircraft LCS: A Real-World, Machine Innovation Application.- Traffic Balance using Learning Classifier Systems in an Agent-based Simulation.- A Multi-Agent Model of the UK Market in Electricity Generation.- Exploring Organizational-Learning Oriented Classifier Systems in Real-World Problems.- Section 3 — Control.- Distributed Routing in Communication Networks using the Temporal Fuzzy Classifier System — a Study on Evolutionary Multi-Agent Control.- The Development of an Industrial Learning Classifier System for Data-Mining in a Steel Hop Strip Mill.- Application of Learning Classifier Systems to the On-Line Reconfiguration of Electric Power Distribution Networks.- Towards Distributed Adaptive Control for Road Traffic Junction Signals using Learning Classifier Systems.- Bibliography of Real-World Classifier Systems Applications.

最近チェックした商品