位相幾何学における層(テキスト)<br>Sheaves in Topology (Universitext)

個数:

位相幾何学における層(テキスト)
Sheaves in Topology (Universitext)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 236 p.
  • 商品コード 9783540206651

基本説明

A textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients.

Full Description

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds, a great geometrical idea due to R. Thom and H. Whitney. These sheaves, generalizing the local systems that are so ubiquitous in mathematics, have powerful applications to the topology of such singular spaces (mainly algebraic and analytic complex varieties).

This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant)coefficients.

The first 5 chapters introduce derived categories, direct and inverse images of sheaf complexes, Verdier duality, constructible and perverse sheaves, vanishing and characteristic cycles. They also discuss relations to D-modules and intersection cohomology. Later chapters apply this powerful tool to the study of the topology of singularities, polynomial functions and hyperplane arrangements.

Some fundamental results, for which excellent sources exist, are not proved but just stated and illustrated by examples and corollaries. In this way, the reader is guided rather quickly from the basic theory to current research questions, supported in this by examples and exercises.

Contents

1 Derived Categories.- 1.1 Categories of Complexes C*(A).- 1.2 Homotopical Categories K*(A).- 1.3 The Derived Categories D*(A).- 1.4 The Derived Functors of Hom.- 2 Derived Categories in Topology.- 2.1 Generahties on Sheaves.- 2.2 Derived Tensor Products.- 2.3 Direct and Inverse Images.- 2.4 The Adjunction Triangle.- 2.5 Local Systems.- 3 Poincaré-Verdier Duality.- 3.1 Cohomological Dimension of Rings and Spaces.- 3.2 The Functor f!.- 3.3 Poincaré and Alexander Duality.- 3.4 Vanishing Results.- 4 Constructible Sheaves, Vanishing Cycles and Characteristic Varieties.- 4.1 Constructible Sheaves.- 4.2 Nearby and Vanishing Cycles.- 4.3 Characteristic Varieties and Characteristic Cycles.- 5 Perverse Sheaves.- 5.1 t-Structures and the Definition of Perverse.- 5.2 Properties of Perverse.- 5.3 D-Modules and Perverse.- 5.4 Intersection Cohomology.- 6 Applications to the Geometry of Singular Spaces.- Singularities, Milnor Fibers and Monodromy.- Topology of Deformations.- Topology of Polynomial Functions.- Hyperplane and Hypersurface Arrangements.- References.

最近チェックした商品