Classical Relativistic Electrodynamics : Theory of Light Emission and Application tro Free Electron Lasers (Advanced Texts in Physics) (2004. IX, 233 w. 73 figs.)

個数:

Classical Relativistic Electrodynamics : Theory of Light Emission and Application tro Free Electron Lasers (Advanced Texts in Physics) (2004. IX, 233 w. 73 figs.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 233 p., 73 illus.
  • 商品コード 9783540206231

Description


(Text)
Classical Relativistic Electrodynamics presents an advanced course of classical electrodynamics with application to the generation of high-power coherent radiation in the microwave to optical-wave regions. Specifically, it provides readers with the basics of advanced electromagnetic theory and relativistic electrodynamics, guiding them step by step through the theory of free-electron lasers. The theoretical treatment throughout this book is fully developed by means of the usual three-dimensional vector calculus. This book can be recommended as a graduate-level textbook or a reference book in the fields of advanced electromagnetic theory, relativistic electrodynamics, beam physics and plasma sciences.
(Table of content)
1. Basic Electromagnetic Theory.- 2. Foundations of Relativistic Electrodynamics.- 3. Radiation from a Moving Charged Particle.- 4. Macroscopic Theory of Relativistic Electron Beams.- 5. Stimulated Cherenkov Effect.- 6. Single-Particle Theory of the Free-Electron Laser.- 7. Collective Theory of the Free-Electron Laser.- 8. FDTD Analysis of Beam-Wave Interaction.- References.

Table of Contents

1. Basic Electromagnetic Theory                    1  (34)
1.1 Basic Field Equations in Vacuum 1 (4)
1.2 Basic Field Equations in Material Media 5 (2)
1.3 Constitutive Relations 7 (2)
1.4 Boundary Conditions 9 (3)
1.5 Electromagnetic Potentials 12 (2)
1.6 Field Equations in the Frequency Domain 14 (2)
1.7 Energy Conservation Relations 16 (5)
1.7.1 Energy Conservation Law in 16 (2)
Nondispersive Media
1.7.2 Energy Conservation Law in 18 (3)
Dispersive Media
1.8 Plane Waves 21 (3)
1.9 Solutions of Inhomogeneous Wave 24 (2)
Equations
1.10 Electromagnetic Radiation in Unbounded 26 (9)
Space
1.10.1 General Case 26 (3)
1.10.2 Electric Dipole Radiation 29 (2)
1.10.3 Radiated Energy and Power 31 (4)
2. Foundations of Relativistic Electrodynamics 35 (28)
2.1 Special Theory of Relativity 35 (1)
2.2 Lorentz Transformations 36 (3)
2.3 Transformation of Electromagnetic 39 (4)
Quantities
2.4 Constitutive Relations for Moving Media 43 (2)
2.5 Transformation of Frequency and Wave 45 (3)
Numbers
2.6 Integral Representations of the Maxwell 48 (2)
Equations in Moving Systems
2.7 Boundary Conditions for a Moving 50 (2)
Boundary
2.8 Equivalence of Energy and Mass 52 (2)
2.9 Relativistic Mechanics for a Material 54 (1)
Particle
2.10 Relativistic Equation of Motion for a 55 (2)
Moving Charged Particle
2.11 Energy and Momentum Conservation Laws 57 (6)
for a System of Charged Particles and
Electromagnetic Fields
3. Radiation from a Moving Charged Particle 63 (28)
3.1 Time-Dependent Green Function for 63 (3)
Inhomogeneous Wave Equations
3.2 Lienard-Wiechert Potentials 66 (2)
3.3 Fields Produced by a Moving Charged 68 (2)
Particle
3.4 Fields of a Charged Particle in Uniform 70 (2)
Motion
3.5 Fields of a Charged Particle in 72 (3)
Accelerated Motion
3.6 Frequency Spectrum of the Radiated 75 (2)
Energy
3.7 Synchrotron Radiation 77 (6)
3.8 Cherenkov Radiation 83 (8)
4. Macroscopic Theory of Relativistic Electron 91 (38)
Beams
4.1 Modeling of Relativistic Electron Beams 91 (1)
4.2 Basic Field Equations for Small-Signal 92 (5)
Fields
4.3 Constitutive Relations for Small-Signal 97 (5)
Fields
4.3.1 Constitutive Relation in the 97 (2)
Convection Current Model
4.3.2 Constitutive Relations in the 99 (3)
Polarization Current Model
4.4 Boundary Conditions at the Beam Boundary 102(1)
4.4.1 Boundary Conditions in the 102(1)
Convection Current Model
4.4.2 Boundary Conditions in the 103(1)
Polarization Current Model
4.5 Energy Conservation Relation for 103(4)
Small-Signal Fields
4.6 Group Velocity and Energy Transport 107(3)
Velocity
4.7 Transformation of Energy Density and 110(3)
Power Flow
4.8 Momentum Conservation Relation for 113(3)
Small-Signal Fields
4.9 Transformation of Momentum Density and 116(1)
Momentum Flow
4.10 Waves in Relativistic Electron Beams 117(12)
4.10.1 Electromagnetic Waves and Electron 118(4)
Cyclotron Waves
4.10.2 Space-Charge Wave (Electron Plasma 122(2)
Wave)
4.10.3 Energy Relations 124(5)
5. Stimulated Cherenkov Effect 129(30)
5.1 Generation of Growing Waves by 129(1)
Stimulated Cherenkov Effect
5.2 Field Expressions in the Relativistic 130(3)
Electron Beam
5.3 Field Expressions in the Dielectric and 133(1)
Vacuum Regions
5.4 Dispersion Relation and Growth Rate 134(8)
5.5 Power Transfer from the Electron Beam 142(4)
to the Electromagnetic Wave
5.6 Single-Particle Approach 146(5)
5.7 Trapping of Electrons in Electric Field 151(8)
6. Single-Particle Theory of the Free-Electron 159(20)
Laser
6.1 Introduction 159(2)
6.2 Synchrotron Radiation from an Array of 161(7)
Permanent Magnets
6.2.1 Condition for Constructive 161(3)
Interference
6.2.2 Frequency Spectrum 164(4)
6.3 Resonant Interaction of Electrons with 168(6)
Electromagnetic Wave
6.3.1 Condition for Resonant Interaction 168(2)
6.3.2 Small Signal Gain 170(4)
6.4 Trapping of Electrons in the Beat Wave 174(5)
7. Collective Theory of the Free-Electron Laser 179(20)
7.1 Introduction 179(1)
7.2 Stimulated Raman Scattering in a 180(3)
Relativistic Electron Beam
7.3 Basic Equations 183(1)
7.4 Coupled-Mode Equations 184(5)
7.5 Solutions of Coupled-Mode Equations 189(3)
7.6 Energy Relations 192(5)
7.7 Saturation in Laser Output and 197(2)
Efficiency of Energy Transfer
8. FDTD Analysis of Beam-Wave Interaction 199(24)
8.1 Introduction 199(1)
8.2 Basic Equations for Particle Simulation 199(2)
8.3 Particle Simulation 201(7)
8.4 Nonlinear Beam-Wave Interaction in a 208(5)
Cherenkov Laser
8.5 Efficiency Enhancement by a Tapered 213(10)
Dielectric Grating
8.5.1 Effective Permittivity of a 213(2)
Dielectric Grating
8.5.2 Dependence of the Growth 215(2)
Characteristics on the Grating Parameters
8.5.3 Efficiency Enhancement 217(6)
References 223(6)
Index 229