Algorithmic Learning Theory : 14th International Conference, Alt 2003, Sapporo, Japan, October 2003 : Proceedings (Lecture Notes in Computer Science)

個数:

Algorithmic Learning Theory : 14th International Conference, Alt 2003, Sapporo, Japan, October 2003 : Proceedings (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 313 p.
  • 言語 ENG
  • 商品コード 9783540202912
  • DDC分類 006.31

基本説明

Subseries: Lecture Notes in Artificial Intelligence.

Full Description

This volume contains the papers presented at the 14th Annual Conference on Algorithmic Learning Theory (ALT 2003), which was held in Sapporo (Japan) duringOctober17-19,2003. Themainobjectiveoftheconferencewastoprovide an interdisciplinary forum for discussing the theoretical foundations of machine learning as well as their relevance to practical applications. The conference was co-locatedwiththe6thInternationalConferenceonDiscoveryScience(DS2003). The volume includes 19 technical contributions that were selected by the program committee from 37 submissions. It also contains the ALT 2003 invited talks presented by Naftali Tishby (Hebrew University, Israel) on "E?cient Data Representations that Preserve Information," by Thomas Zeugmann (University of Lub .. eck, Germany) on "Can Learning in the Limit be Done E?ciently?", and by Genshiro Kitagawa (Institute of Statistical Mathematics, Japan) on "S- nal Extraction and Knowledge Discovery Based on Statistical Modeling" (joint invited talk with DS 2003).
Furthermore, this volume includes abstracts of the invitedtalksforDS2003presentedbyThomasEiter(ViennaUniversityofTe- nology, Austria) on "Abduction and the Dualization Problem" and by Akihiko Takano (National Institute of Informatics, Japan) on "Association Computation for Information Access. " The complete versions of these papers were published in the DS 2003 proceedings (Lecture Notes in Arti?cial Intelligence Vol. 2843). ALT has been awarding theE. MarkGoldAward for the most outstanding paper by a student author since 1999. This year the award was given to Sandra Zilles for her paper "Intrinsic Complexity of Uniform Learning. " This conference was the 14th in a series of annual conferences established in 1990. ContinuationoftheALTseriesissupervisedbyitssteeringcommittee,c- sisting of: Thomas Zeugmann (Univ.

Contents

Invited Papers.- Abduction and the Dualization Problem.- Signal Extraction and Knowledge Discovery Based on Statistical Modeling.- Association Computation for Information Access.- Efficient Data Representations That Preserve Information.- Can Learning in the Limit Be Done Efficiently?.- Inductive Inference.- Intrinsic Complexity of Uniform Learning.- On Ordinal VC-Dimension and Some Notions of Complexity.- Learning of Erasing Primitive Formal Systems from Positive Examples.- Changing the Inference Type - Keeping the Hypothesis Space.- Learning and Information Extraction.- Robust Inference of Relevant Attributes.- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables.- Learning with Queries.- On the Learnability of Erasing Pattern Languages in the Query Model.- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries.- Learning with Non-linear Optimization.- Kernel Trick Embedded Gaussian Mixture Model.- Efficiently Learning the Metric with Side-Information.- Learning Continuous Latent Variable Models with Bregman Divergences.- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation.- Learning from Random Examples.- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays.- Learning a Subclass of Regular Patterns in Polynomial Time.- Identification with Probability One of Stochastic Deterministic Linear Languages.- Online Prediction.- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback.- Well-Calibrated Predictions from Online Compression Models.- Transductive Confidence Machine Is Universal.- On the Existence and Convergence of Computable Universal Priors.