Excitons in Low-Dimensional Semiconductors : Theory, Numerical Methods, Applications (Springer Series in Solid-State Sciences Vol.141) (2004. 300 p. w. 41 figs.)

個数:

Excitons in Low-Dimensional Semiconductors : Theory, Numerical Methods, Applications (Springer Series in Solid-State Sciences Vol.141) (2004. 300 p. w. 41 figs.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 商品コード 9783540202400

Description


(Text)
Low-dimensional semiconductors have become a vital part of today's semiconductor physics, and excitons in these systems are ideal objects that bring textbook quantum mechanics to life. Furthermore, their theoretical understanding is important for experiments and optoelectronic devices. The author developsthe effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.
(Table of content)
1 Optical Transitions in Semiconductors.- 2 Numerical Calculation.- 3 Fano Resonances.- 4 Zener Breakdown in Superlattices.- A Mathematical Supplement.- A.1 Basic Definitions and Relations.- A.2 Special Functions of Mathematical Physics.- A.3 Miscellaneous Relations.- B Physical Supplement.- B.1 Physical Constants and Material Parameters.- B.2 Dimensionless Quantities.- B.3 Crystal Symmetry.- C Essentials of Quantum Mechanics.- C.1 The Quantum-Mechanical Eigenvalue Problem.- C.1.1 The Spectrum of Schrödinger Operators.- C.1.2 Selected Eigenvalue Problems.- C.2 Angular Momentum in Quantum Mechanics.- C.2.1 The Eigenvalue Problem.- C.2.2 Orthogonal Transformations.- C.2.3 Addition of Angular Momenta.- C.2.4 Time Reversal.- C.3 Perturbation Theory.- C.3.1 Degenerate Time-Independent Perturbation Theory.- C.3.2 Time-Dependent Perturbation Theory.- D Computer Programs.- D.1 Cartesian Coordinates.- D.2 Polar Coordinates.- D.3 Time-Reversal Symmetry.- D.4 Absorbing Boundary Conditions.-D.5 Cylindrical Coordinates.- References.

Table of Contents

1 Optical Transitions in Semiconductors            1  (46)
1.1 Effective-Mass Theory 2 (15)
1.1.1 Electron in a Periodic Potential 3 (4)
1.1.2 k.p Perturbation Theory 7 (6)
1.1.3 Low-Dimensional Structures 13 (4)
1.2 Electron-Light Interaction 17 (12)
1.2.1 Transition Matrix Elements 18 (2)
1.2.2 The Optical Density of States 20 (3)
1.2.3 Examples 23 (6)
1.3 Excitons 29 (15)
1.3.1 The Semiconductor Bloch Equations 31 (4)
1.3.2 The Elliott Formula 35 (4)
1.3.3 Examples 39 (5)
1.4 Summary and Conclusions 44 (3)
2 Numerical Calculation 47 (54)
2.1 Preliminaries 48 (12)
2.1.1 Formulation of the Problem 49 (5)
2.1.2 Overview 54 (6)
2.2 Approximation in Space 60 (23)
2.2.1 Orthonormal Base Functions 61 (8)
2.2.2 Non-Orthonormal Base Functions 69 (7)
2.2.3 Finite Differences 76 (7)
2.3 Solution of the Initial-Value Problem 83 (16)
2.3.1 The Time-Propagation Scheme 84 (5)
2.3.2 Two Examples 89 (4)
2.3.3 Absorbing Boundary Conditions 93 (6)
2.4 Summary and Conclusions 99 (2)
3 Fano Resonances 101(44)
3.1 The Fano Model 102(12)
3.1.1 One Resonance and One Continuum 103(4)
3.1.2 The General Case 107(7)
3.2 Fano Resonances as a General Feature 114(8)
3.2.1 The Channel Picture 114(5)
3.2.2 The Subband Picture 119(3)
3.3 Examples 122(20)
3.3.1 Overview 122(4)
3.3.2 Bulk Semiconductor in a Magnetic Field 126(10)
3.3.3 Quantum Well 136(6)
3.4 Summary and Conclusions 142(3)
4 Zener Breakdown in Superlattices 145(64)
4.1 Bloch Electron in One Dimension 149(9)
4.1.1 General Properties 150(1)
4.1.2 Tightly Bound and Nearly Free 151(3)
Electrons
4.1.3 Two Samples 154(4)
4.2 Bloch Electron in an Electric Field 158(14)
4.2.1 Discrete Model and Tight-Binding 158(4)
Approximation
4.2.2 Kane Functions 162(7)
4.2.3 Breakdown of Wannier-Stark Ladders 169(3)
4.3 The Optical Spectrum 172(19)
4.3.1 Optical Density of States 173(8)
4.3.2 Optical Absorption 181(7)
4.3.3 Optical Absorption in a Perpendicular 188(3)
Magnetic Field
4.4 The Tunneling Rate 191(15)
4.4.1 Semiclassical Approach 192(4)
4.4.2 Perturbation Theory 196(7)
4.4.3 Discussion 203(3)
4.5 Summary and Conclusions 206(3)
A Mathematical Supplement 209(14)
A.1 Basic Definitions and Relations 209(6)
A.2 Special Functions of Mathematical Physics 215(2)
A.3 Miscellaneous Relations 217(6)
B Physical Supplement 223(8)
B.1 Physical Constants and Material Parameters 223(2)
B.2 Dimensionless Quantities 225(2)
B.3 Crystal Symmetry 227(4)
C Essentials of Quantum Mechanics 231(24)
C.1 The Quantum-Mechanical Eigenvalue Problem 231(13)
C.1.1 The Spectrum of Schrodinger Operators 231(3)
C.1.2 Selected Eigenvalue Problems 234(10)
C.2 Angular Momentum in Quantum Mechanics 244(6)
C.2.1 The Eigenvalue Problem 245(2)
C.2.2 Orthogonal Transformations 247(1)
C.2.3 Addition of Angular Momenta 248(1)
C.2.4 Time Reversal 249(1)
C.3 Perturbation Theory 250(5)
C.3.1 Degenerate Time-Independent 250(1)
Perturbation Theory
C.3.2 Time-Dependent Perturbation Theory 251(4)
D Computer Programs 255(18)
D.1 Cartesian Coordinates 255(5)
D.2 Polar Coordinates 260(4)
D.3 Time-Reversal Symmetry 264(1)
D.4 Absorbing Boundary Conditions 265(3)
D.5 Cylindrical Coordinates 268(5)
References 273(16)
Index 289