Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing Vol.128) (2003. 620 p.)

個数:

Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing Vol.128) (2003. 620 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 620 p.
  • 商品コード 9783540029328

Full Description

Fuzzy modeling has become one of the most productive and successful results of fuzzy logic. Among others, it has been applied to knowledge discovery, automatic classification, long-term prediction, or medical and engineering analysis. The research developed in the topic during the last two decades has been mainly focused on exploiting the fuzzy model flexibility to obtain the highest accuracy. This approach usually sets aside the interpretability of the obtained models. However, we should remember the initial philosophy of fuzzy sets theory directed to serve the bridge between the human understanding and the machine processing. In this challenge, the ability of fuzzy models to express the behavior of the real system in a comprehensible manner acquires a great importance. This book collects the works of a group of experts in the field that advocate the interpretability improvements as a mechanism to obtain well balanced fuzzy models.

Contents

Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview.- Regaining comprehensibility of approximative fuzzy models via the use of linguistic hedges.- Identifying flexible structured premises for mining concise fuzzy knowledge.- A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems.- Extracting linguistic fuzzy models from numerical data-AFRELI algorithm.- Constrained optimization of fuzzy decision trees.- A new method for inducing a set of interpretable fuzzy partitions and fuzzy inference systems from data.- A Feature Ranking Algorithm for Fuzzy Modelling Problems.- Interpretability in multidimensional classification.- Interpretable semi-mechanistic fuzzy models by clustering, OLS and FIS model reduction.- Trade-off between approximation accuracy and complexity: TS controller design via HOSVD based complexity minimization.- Simplification and reduction of fuzzy rules.- Effect of rule representation in rule base reduction.- Singular value-based fuzzy reduction with relaxed normalization condition.- Interpretability, complexity, and modular structure of fuzzy systems.- Hierarchical genetic fuzzy systems: accuracy, interpretability and design autonomy.- About the trade-off between accuracy and interpretability of Takagi-Sugeno models in the context of nonlinear time series forecasting.- Accurate, transparent and compact fuzzy models by multi-objective evolutionary algorithms.- Transparent fuzzy systems in modeling and control.- Uniform fuzzy partitions with cardinal splines and wavelets: getting interpretable linguistic fuzzy models.- Relating the theory of partitions in MV-logic to the design of interpretable fuzzy systems.-A formal model of interpretability of linguistic variables.- Expressing relevance and interpretability of rule-based systems.- Conciseness of fuzzy models.- Exact trade-off between approximation accuracy and interpretability: solving the saturation problem for certain FRBSs.- Interpretability improvement of RBF-based neurofuzzy systems using regularized learning.- Extracting fuzzy classification rules from fuzzy clusters on the basis of separating hyperplanes.

最近チェックした商品