走査プローブ顕微鏡と産業面への応用<br>Applied Scanning Probe Methods (Nanoscience and Technology) (2004. XX, 476 p. w. 338 figs. (6 col.) 24 cm)

個数:

走査プローブ顕微鏡と産業面への応用
Applied Scanning Probe Methods (Nanoscience and Technology) (2004. XX, 476 p. w. 338 figs. (6 col.) 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 460 p., 280 illus.
  • 商品コード 9783540005278

基本説明

Contents: Dynamic Force Microscopy; Interfacial Force Microscopy; Micro/Nanotribology and Materials Characterization Studies Using Scanning Probe Microscopy; AFM Characterization of Semiconductor Line Edge Roughness; and more.

Full Description


Examining the physical and technical foundation for recent progress with this technique, Applied Scanning Probe Methods offers a timely and comprehensive overview of SPM applications, now that industrial applications span topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. First it lays the theoretical background of static and dynamic force microscopies, including sensor technology and tip characterization, contributions detail applications such as macro- and nanotribology, polymer surfaces, and roughness investigations. The final part on industrial research addresses special applications of scanning force nanoprobes such as atomic manipulation and surface modification, as well as single electron devices based on SPM.

Table of Contents

Part I Scanning Probe Microscopy                   1  (168)
1 Dynamic Force Microscopy
Andr Schirmeisen, Boris Anczykowski, 3 (38)
Harald Fuchs
1.1 Introduction 3 (1)
1.2 Motivation: Measurement of a Single 3 (6)
Atomic Bond
1.3 Harmonic Oscillator: A Model System 9 (3)
for Dynamic AFM
1.4 Dynamic AFM Operational Modes 12 (14)
1.4.1 Amplitude-modulation/tapping-mode 13 (9)
AFM
1.4.2 Self-Excitation Modes 22 (4)
1.5 Q-Control 26 (5)
1.6 Dissipation Processes Measured with 31 (5)
Dynamic AFM
1.7 Conclusion 36 (1)
References 37 (4)
2 Interfacial Force Microscopy: Selected
Applications
Jack E. Houston 41 (34)
2.1 Introduction 41 (1)
2.2 The IFM Sensor 42 (4)
2.3 Selected Applications 46 (24)
2.3.1 Adhesion 46 (6)
2.3.2 Nanomechanical Properties 52 (8)
2.3.3 Molecular-Level Friction Studies 60 (10)
2.4 Conclusions 70 (1)
References 71 (4)
3 Atomic Force Microscopy with Lateral
Modulation
Volker Scherer Michael Reinst臈tler, Walter 75 (42)
Arnold
3.1 Introduction 75 (1)
3.2 Lateral Forces 76 (2)
3.3 Contact Mechanics 78 (1)
3.4 Conventional Friction Force Microscopy 79 (3)
3.5 Lateral Modulation Below Resonance 82 (6)
3.5.1 (Visco-)Elastic Properties by 83 (1)
Lateral Modulation
3.5.2 Friction Properties by Lateral 84 (1)
Modulation
3.5.3 Lateral Modulation by 85 (3)
Piezoelectric Transducers
3.6 Resonance Techniques 88 (13)
3.6.1 Free Resonances 88 (3)
3.6.2 Contact Resonances 91 (5)
(Visco-)Elastic Contact
3.6.3 Contact Resonances Sliding Contact 96 (2)
3.6.4 "Buckling" Resonances 98 (1)
3.6.5 Self Excitation 98 (1)
3.6.6 Imaging Torsional Vibration 99 (2)
3.7 Sonolubrication 101(5)
3.7.1 Theory of Out-Of-Plane 103(1)
Sonolubrication
3.7.2 Theory of In-Plane Sonolubrication 104(2)
3.8 Related Methods 106(11)
3.8.1 Surface Force Apparatus 106(1)
3.8.2 Quartz Crystal Balance 107(1)
Appendix 1 108(1)
Appendix 2 109(1)
Appendix 3 110(4)
References 114(3)
4 Sensor Technology for Scanning Probe
Microscopy
Egbert Oesterschulze, Rainer Kassing 117(30)
4.1 Introductory Remarks 117(1)
4.2 Material Aspect of Probe Fabrication 118(9)
4.2.1 Mechanical Properties of 119(8)
Cantilever Probes
4.3 Scanning Near-Field Optical Microscopy 127(9)
4.3.1 Principle of Near-Field Optics 127(1)
4.3.2 Probes for Scanning Near-Field 128(8)
Optical Microscopy (SNOM)
4.4 Probes for Ultrafast Scanning Probe 136(11)
Microscopy
4.4.1 Improved Sampling Technique 137(2)
References 139(8)
5 Tip Characterization for Dimensional
Nanometrology
John S. Villarrubia 147(24)
5.1 Introduction 147(1)
5.2 Tip Characterization Overview 148(3)
5.3 Measuring Tip Shape with a Known Tip 151(4)
Characterizer
5.3.1 Dilation and Erosion 151(1)
5.3.2 Reconstructing the Tip 152(2)
5.3.3 Interpreting and Checking the 154(1)
Result
5.3.4 Summary of the Method 155(1)
5.4 Measuring Tip Shape without a Known 155(16)
Characterizer
5.4.1 Why Does it Work? 156(1)
5.4.2 Reconstructing the Tip 157(7)
5.4.3 Other Modes of Operation 164(1)
5.4.4 Summary of the Method 165(1)
5.4.5 Experimental Test of Blind 165(3)
Reconstruction
References 168(1)
Part II Characterization 169(218)
6 Micro/Nanotribology Studies Using Scanning
Probe Microscopy
Bharat Bhushan 171(36)
6.1 Introduction 171(2)
6.2 Friction and Adhesion 173(12)
6.2.1 Atomic-Scale Friction 173(1)
6.2.2 Microscale Friction 173(5)
6.2.3 Directionality Effect on 178(3)
Microfriction
6.2.4 Velocity Dependence on 181(1)
Microfriction
6.2.5 Effect of Tip Radii and Humidity 182(1)
on Adhesion and Friction
6.2.6 Scale Dependence on Friction 183(2)
6.3 Scratching, Wear, and Local 185(6)
Deformation
6.3.1 Microscale Scratching 185(2)
6.3.2 Microscale Wear 187(3)
6.3.3 In Situ Characterization of Local 190(1)
Deformation
6.4 Indentation 191(2)
6.4.1 Nanoscale Indentation 191(2)
6.5 Boundary Lubrication 193(9)
6.5.1 Perfluoropolyether Lubricants 193(6)
6.5.2 Self-Assembled Monolayers 199(1)
6.5.3 Lubricant Film Thickness 200(2)
Measurements
6.6 Conclusions 202(1)
References 203(4)
7 Visualization of Polymer Structures with
Atomic Force Microscopy
Sergei Magonov 207(46)
7.1 Introduction 207(5)
7.2 Basic Aspects of AFM Imaging of 212(10)
Polymers
7.2.1 Instrumentation and Operational 212(3)
Modes
7.2.2 Sample Preparation 215(1)
7.2.3 Imaging in Tapping Mode 216(5)
7.2.4 Studies at Elevated Temperatures 221(1)
and in Different Environments
7.3 Observations of Single Macromolecules 222(10)
and Their Self-Assemblies
7.3.1 Chain Molecules on Substrates 222(4)
7.3.2 Self-Assembly of Individual 226(3)
Macromolecules
7.3.3 Thermal Motion, Adhesion, and 229(3)
Manipulation
7.4 Studies of Semicrystalline Polymers 232(9)
7.4.1 Single Crystals of Normal Alkanes 232(3)
and Polyethylene
7.4.2 Morphology of Semicrystalline 235(3)
Polymers on Surfaces and in Bulk
7.4.3 Lamellar Structure of 238(3)
Melt-Crystallized Polymers
7.5 Compositional Imaging of 241(8)
Heterogeneous Polymer Systems
7.5.1 Morphology of Block Copolymers 241(3)
7.5.2 Studies of Polymer Blends 244(5)
7.6 Future Outlook 249(1)
References 250(3)
8 Displacement and Strain Field Measurements
from SPM Images
J gen Keller Dietmar Vogel, Andreas 253(24)
Schubert, Bernd Michel
8.1 Introduction 253(1)
8.2 Basics of Digital Image Correlation 254(6)
8.2.1 Cross-Correlation Algorithms on 255(2)
Gray Scale Images
8.2.2 Subpixel Analysis for Enhanced 257(2)
Resolution
8.2.3 Results of Digital Image 259(1)
Correlation
8.2.4 Accuracy 260(1)
8.3 Displacement and Strain Measurements 260(3)
on SFM images
8.3.1 Digital Image Correlation under 260(2)
SPM Conditions
8.3.2 Technical Requirements for the 262(1)
Application of the Correlation Technique
8.4 Deformation Analysis on Thermally and 263(10)
Mechanically Loaded Objects under the SFM
8.4.1 Reliability Aspects of Sensors 263(1)
and Micro Electro-Mechanical Systems
(MEMS)
8.4.2 Thermally Loaded Gas Sensor under 264(2)
SFM
8.4.3 Crack Detection and Evaluation by 266(7)
SFM
8.5 Determination of Kinematical 273(1)
Properties from SFM Images
8.6 Conclusion and Outlook 274(1)
Abbreviations 274(1)
References 275(2)
9 AFM Characterization of Semiconductor Line
Edge Roughness
Ndubuisi G. Orji, Martha I. Sanchez, Jay 277(26)
Raja, Theodore V. Vorburger
9.1 Introduction 277(2)
9.2 Procedures and Algorithms 279(3)
9.2.1 Observation 1 - A Recommendation 279(1)
9.2.2 Observation 2 279(1)
9.2.3 Observation 3 280(1)
9.2.4 Observation 4 280(1)
9.2.5 Observation 5 280(1)
9.2.6 Observation 6 -A Recommendation 281(1)
9.2.7 Observation 7 -A Recommendation 282(1)
9.2.8 Observation 8 282(1)
9.3 AFM Measurement Methods 282(9)
9.3.1 Atomic Force Characterization of 282(3)
Patterned Lines
9.3.2 AFM Characterization of Line Edge 285(5)
Roughness
9.3.3 New Directions 290(1)
9.4 Analysis Methods 291(5)
9.4.1 RMS Roughness 292(1)
9.4.2 Linewidth Uniformity 293(1)
9.4.3 Spatial Wavelength Determination 294(2)
9.5 Comparison with SEM Measurements 296(2)
9.6 Future Outlook 298(1)
9.6.1 Physical Standards 298(1)
Abbreviations 299(1)
References 299(4)
10 Mechanical Properties of Self-Assembled
Organic Monolayers: Experimental Techniques
and Modeling Approaches
Redhouane Henda 303(1)
10.1 Introduction 303(1)
10.1.1 Self-Assembled Systems 303(2)
10.1.2 Origin of Stiction and 305(2)
Mechanical Properties in Small
Dimensions
10.1.3 Goals and Motivation 307(1)
10.2 Experimental Techniques 307(1)
10.2.1 Introduction 307(1)
10.2.2 Atomic Force Microscopy 308(1)
10.2.3 Interfacial Force Microscopy 309(1)
10.2.4 Analysis of Load-Displacement 310(1)
Curves
10.3 Molecular Modeling 311(1)
10.3.1 Introduction 311(3)
10.3.2 Definition of an Alkanethiol SAM 314(2)
10.3.3 Energy Minimization 316(1)
10.3.4 Molecular Dynamics 317(1)
10.3.5 Monte Carlo Method 317(1)
10.4 Results 318(1)
10.5 Conclusions 323(1)
References 324(3)
11 Micro-Nano Scale Thermal Imaging Using
Scanning Probe Microscopy
Li Shi, Arun Majumdar 327(1)
11.1 Introduction 327(1)
11.2 Micro-Nano Scale Temperature Mapping 328(1)
Using Probes with Built-in Thermal Sensors
11.2.1 STM Probes with a Built-in 328(1)
Thermocouple
11.2.2 Wire Thermocouple AFM Probes 329(3)
11.2.3 Individually Made Thin-Film 332(3)
Thermocouple Probes
11.2.4 Thermocouple Probes Fabricated 335(1)
Using Nanolithography
11.2.5 Thermally Designed 336(4)
Batch-Fabricated Thermocouple Probes
11.2.6 AFM Probes with a Built-in 340(1)
Schottky Diode
11.2.7 AFM Probes with a Built-in 340(2)
Resistance Thermometer
11.2.8 Active Thermal Feedback AFM 342(1)
Probes
11.3 Mechanisms of Heat Transfer between 342(1)
a Thermal Probe and a Sample
11.4 Imaging of Thermal Properties 346(1)
11.5 Other Scanning Thermal Microscopy 353(1)
Methods
11.5.1 Scanning Tunneling Thermometry 353(1)
11.5.2 Thermal Expansion Thermometry 354(3)
11.5.3 Near-Field Scanning Optical 357(4)
Thermometry
References 361(2)
12 The Science of Beauty on a Small Scale.
Nanotechnologies Applied to Cosmetic Science
Gustavo Luengo, Fr馘駻ic Leroy 363(1)
12.1 Introduction to Cosmetic Science 363(1)
12.2 Tfie Cosmetic Substrate: Hair and 364(1)
Skin and Their Modification
12.2.1 Hair 364(3)
12.2.2 Skin 367(2)
12.3 The SPM as a New Tool. From the 369(1)
Microscopic World to the Cosmetic or
Sensory Perception
12.4 Recent Uses of AFM on Cosmetic 371(1)
Substrates
12.4.1 Morphological Studies 371(2)
12.4.2 Tribological Approaches 373(4)
12.5 Advanced Applications of AFM 377(1)
12.5.1 Dynamic Methods 377(2)
12.5.2 Forces at the Hair Surface 379(3)
12.6 The Influence of Hair and Skincare 382(1)
Treatments
12.7 Conclusions 384(1)
References 385(2)
Part III Industrial Applications 387(1)
13 SPM Manipulation and Modifications and
Their Storage Applications
Sumio Hosaka 389(1)
13.1 Atomic Manipulation and Surface 390(1)
Modification and their Storage Application
13.2 Nanometer-Sized Bit Formations 390(1)
13.2.1 Field Evaporation 391(7)
13.2.2 Nano-Indentation of Probe Tip 398(3)
into a Sample Surface
13.2.3 Electron Induced Local Heating 401(7)
and Evanescent Light Heating
13.3 Various SPM Storages [31] 408(1)
13.3.1 STM-Based Storage 408(1)
13.3.2 AFM-Based Storage 409(1)
13.3.3 MFM-Based Storage 410(1)
13.3.4 SNOM-Based Storage 411(1)
13.3.5 Other SPM-Based Storages 412(1)
13.4 High-Speed Readout [32] 413(1)
13.4.1 Noncontact Recording 413(1)
13.4.2 Contact Recording 414(1)
13.5 Possibility of SNOM-Based Storage [4] 414(1)
13.5.1 Expectable Readout Speed 415(1)
13.5.2 Rotation-Type SNOM Recording 415(3)
System
13.5.3 Future Issues 418(1)
13.6 Possibility of AFM-Based Storage 418(1)
13.6.1 Expectable Readout Speed 418(1)
13.6.2 Prototyping of Rotation-Type AFM 419(8)
Recording System
13.6.3 Summary 427(1)
13.7 Perspective and Summary 427(1)
References 428(1)
14 Super Density Optical Data Storage by
Near-Field Optics
Jun Tominaga 429(1)
14.1 Introduction 429(1)
14.2 The Principle of Super-RENS 429(1)
14.3 The Characteristics of Super-RENS 431(1)
Disks Using Sb Layers
14.4 The Proposal of 434(1)
Light-Scattering-Mode Super-RENS
14.5 The Characteristics of 434(1)
Light-Scattering-Mode Super-RENS Disks
14.6 Summary 437(1)
References 437(2)
15 Capacitance Storage Using a Ferroelectric
Medium and a Scanning Capacitance Microscope
(SCM)
Ryoichi Yamamoto 439(1)
15.1 Introduction 439(1)
15.1.1 "Near-Field" Data Storage 439(1)
Technology
15.1.2 Scanning Capacitance Microscope 439(2)
15.1.3 Capacitance Storage 441(1)
15.2 A Non-Contact-Mode SCM 442(1)
15.2.1 Capacitance Detection Method 442(1)
15.2.2 Spacing Control Method Using 443(1)
Differential Capacitance
15.2.3 Non-Contact Mapping of Surface 443(1)
Topography
15.3 Data Storage Method Using the F/S 444(1)
Medium
15.4 Static Characteristics of the F/S 445(1)
Medium
15.4.1 Materials and Ferroelectric 445(2)
Properties of the F/S Medium
15.4.2 Shift of C-V Characteristics 447(1)
Using Fixed Electrodes
15.4.3 Non-Contact Demonstration 448(1)
15.5 Dynamic Characteristics of the F/S 449(1)
Medium
15.5.1 Dynamic Recording Characteristics 449(2)
15.5.2 Bit Shape Observation 451(1)
15.6 Numerical Simulation Studies of F/S 451(1)
Medium
15.6.1 Calculation Method 452(2)
15.6.2 Capacitance Modulation of the 454(1)
F/S Medium
15.7 Summary and Possibilities of 455(1)
Capacitance Storage
15.7.1 Summary 455(1)
15.7.2 Possibilities of the Capacitance 456(1)
Storage
References 457(2)
16 Room-Temperature Single-Electron Devices
formed by AFM Nano-Oxidation Process
Kazuhiko Matsumoto 459(1)
16.1 Introduction 459(1)
16.2 AFM Nano-Oxidation Process 459(1)
16.3 Single-Electron Transistor 461(1)
16.4 Single-Electron Memory 463(1)
16.5 Summary 467(1)
References 467(2)
Subject Index 469