Numerische Mathematik : Eine projektorientierte Einführung für Ingenieure, Mathematiker und Naturwissenschaftler (Vieweg Studium, Grundkurs Mathematik) (2004. xii, 286 S. XII, 286 S. 43 Abb. 240 mm)

個数:

Numerische Mathematik : Eine projektorientierte Einführung für Ingenieure, Mathematiker und Naturwissenschaftler (Vieweg Studium, Grundkurs Mathematik) (2004. xii, 286 S. XII, 286 S. 43 Abb. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 298 p.
  • 言語 GER
  • 商品コード 9783528032203

Full Description

Der Text ist durch Anwendungen motiviert und entwickelt die Bedurfnisse nach numerischen Methoden konzeptionell anhand der Losung von Differentialgleichungen. D.h., es gibt einen roten Faden und die Studierenden sehen, warum jetzt bestimmte Techniken zu erlernen sind. Zwei Anwendungen ziehen sich durch das Buch: ein mechanisches Mehrkorpersystem und ein Warmeleitungsproblem, an denen die Fragestellung und Phanomene erklart werden. Das Buch lasst sich mit oder ohne Beweise verwenden.

Contents

1 Einführung.- 2 Zentrale Modellprojekte.- 2.1 Modellprojekt 1 — Die Fahrerkabine.- 2.2 Modellprojekt 2 — Die Kühlrippe.- 3 Anfangswertaufgaben.- 3.1 Anwendungsbeispiele.- 3.2 Mathematische Probleme bei Anfangswertaufgaben.- 3.3 Numerische Behandlung gewöhnlicher Differenzialgleichungen.- 3.4 Das explizite Euler-Verfahren.- 3.5 Allgemeine Einschrittverfahren.- 3.6 Fehlerbetrachtung.- 3.7 Abschätzung des globalen Fehlers.- 3.8 Diskussion der Ergebnisse.- 3.9 Anmerkungen und Beweise.- 4 Fehleranalyse.- 4.1 Rechnerarithmetik.- 4.2 Rundungsfehler.- 4.3 Fehlerfortpflanzung und numerische Verfahrensfehler.- 4.4 Fehleranalyse.- 4.5 Fehleranalyse bei Einschrittverfahren.- 4.6 Diskussion der Ergebnisse.- 4.7 Anmerkungen.- 5 Randwertaufgaben.- 5.1 Anwendungsbeispiele.- 5.2 Eindimensionale Randwertaufgaben.- 5.3 Zweidimensionale Randwertprobleme.- 5.4 Approximationseigenschaften Finiter Differenzen.- 5.5 Anmerkungen und Beweise.- 6 Interpolation.- 6.1 Einführung.- 6.2 Polynominterpolation.- 6.3 Spline-Interpolation.- 6.4 Anmerkungen und Beweise.- 7 Numerische Integration.- 7.1 Newton-Cotes-Formeln.- 7.2 Summierte Regeln.- 7.3 Extrapolation.- 7.4 Anwendung auf Modellprojekt der Fahrerkabine.- 7.5 Anmerkungen und Beweise.- 8 Diskrete Fourier-Transformation.- 8.1 Anmerkungen und Beweise.- 8.1.1 Beweis von Satz 8.3.- 8.1.2 Beweis von Satz 8.5.- 9 Lineare Gleichungssysteme.- 9.1 Anwendungsbeispiele.- 9.2 Normen und andere Grundlagen.- 9.3 Kondition eines linearen Gleichungssystems.- 9.4 Die LR-Zerlegung.- 9.5 Lösen von Dreieckssystemen.- 9.6 Fehleranalyse der LR-Zerlegung.- 9.7 Partielle Pivotisierung.- 9.8 Abschätzung der Genauigkeit.- 9.9 Verbesserung der Genauigkeit.- 9.10 Die Cholesky-Zerlegung.- 9.11 Anmerkungen und Beweise.- 10 Nichtlineare Gleichungssysteme.- 10.1 EinAnwendungsproblem.- 10.2 Fixpunktverfahren.- 10.3 Das Newton-Verfahren.- 10.4 Anwendungsbeispiele.- 10.5 Anmerkungen und Beweise.- 11 Verfahren höherer Ordnung für Anfangswertprobleme.- 11.1 Ein Anwendungsbeispiel.- 11.2 Einfache Verfahren höherer Ordnung.- 11.3 Runge-Kutta-Verfahren.- 11.4 Implizite Rimge-Kutta-Formeln.- 11.5 Schrittweitensteuerung.- 11.6 Anmerkungen und Beweise.- 12 Stabilität von Verfahren zur Lösung von Differenzialgleichungen.- 12.1 Steife Differenzialgleichungen.- 12.2 Steifheit bei partiellen Differenzialgleichungen.- 12.3 Anmerkungen und Beweise.- 13 Unter- und überbestimmte Gleichungssysteme.- 13.1 Anwendungsbeispiele.- 13.2 Die QR-Zerlegung.- 13.3 Die QR-Zerlegung für Ausgleichsprobleme.- 13.4 Die QR-Zerlegung angewendet auf das Modellproblem.- 13.5 Anmerkungen und Beweise.- 14 Eigenwertprobleme.- 14.1 Anwendungsprobleme.- 14.2 Einige Grundlagen.- 14.3 Der QR-Algorithmus für allgemeine Matrizen.- 14.4 Berechnung von Eigenvektoren.- 14.5 Die Singulärwertzerlegung.- 14.6 Anmerkungen und Beweise.- A Ausgewählte Kapitel der Numerischen Mathematik.- A.1 Finite Elemente.- A.2 Lösungsmethoden für große, schwach besetzte Gleichungssysteme.- B Frei erhältliche Software.- C Übungsaufgaben.- C.1 Übungen zu Kapitel 2.- C.2 Übungen zu Kapitel 3.- C.3 Übungen zu Kapitel 4.- C.4 Übungen zu Kapitel 5.- C.5 Übungen zu Kapitel 6.- C.6 Übungen zu Kapitel 7.- C.7 Übungen zu Kapitel 8.- C.8 Übungen zu Kapitel 9.- C.9 Übungen zu Kapitel 10.- C.10 Übungen zu Kapitel 11.- C.11 Übungen zu Kapitel 12.- C.12 Übungen zu Kapitel 13.- C.13 Übungen zu Kapitel 14.- C.14 Übungen zu Kapitel A.2.- D Empfohlener Syllabus.- E Notation.

最近チェックした商品