Full Description
Für alle, die es genauer wissen wollen: Band 1 der Neuauflage des unschlagbar präzisen Ansorge/Oberle-Lehrwerks zur Mathematik in den Ingenieur- und Naturwissenschaften
In sämtlichen Ingenieurwissenschaften, insbesondere im Maschinenbau, im Bauingenieurwesen und in der Elektrotechnik, ist Mathematik unverzichtbar bei der Beschreibung, Modellierung und Lösung ingenieurwissenschaftlicher Probleme. Für Studierende dieser Fächer ist es daher unabdingbar, sich detailliert mit der Mathematik auseinanderzusetzen und Wissen zu erwerben, das über die reine Anwendung von "Kochrezepten" hinausgeht.
Der vorliegende Band 1 des vollständig überarbeiteten und erweiterten Lehrwerks "Mathematik in den Ingenieur- und Naturwissenschaften" gibt eine Einführung in die Lineare Algebra und analytische Geometrie sowie die Differential- und Integralrechnung einer Variablen. Bei den Herleitungen wird besonderer Wert gelegt auf Vollständigkeit und mathematische Exaktheit. In den Beispielen behandeln die Autoren die Anwendung mathematischer Techniken und Vorgehensweisen auf häufig vorkommende Probleme in den Ingenieurwissenschaften. Numerische Methoden und deren Implementierung in MATLAB runden das Buch ab.
* Zum Tiefereinsteigen: besonders geeignet für diejenigen, die eine anspruchsvolle Darstellung der höheren Mathematik in den Ingenieur- und Naturwissenschaften suchen
* Bewährtes Konzept, überarbeitet und erweitert: präzise, sauber, fachlich korrekt und anwendungsnah
* Neu in dieser Auflage: mit mehr Motivationen und Erläuterungen und zahlreichen neuen Anwendungsbeispielen und Modellbildungen
* Dazu passend: das neue Aufgaben- und Lösungsbuch
Contents
Vorwort zur fünften Auflage ix
Vorwort zur vierten Auflage xi
Vorwort zur dritten Auflage xiii
Vorwort zur zweiten Auflage xv
Vorwort xvii
1 Aussagen, Mengen und Funktionen 1
1.1 Aussagen 1
1.2 Mengen 6
1.3 Funktionen 10
2 Zahlenbereiche 17
2.1 Naturliche Zahlen 17
2.2 Reelle Zahlen 25
2.3 Komplexe Zahlen 33
3 Vektorrechnung und Analytische Geometrie 45
3.1 Vektoren 45
3.2 Geraden und Ebenen im ℝ3 61
3.3 Allgemeine Vektorraume 65
4 Lineare Gleichungssysteme 73
4.1 Matrizenkalkul 73
4.2 Gaus-Elimination 77
4.3 Inverse Matrizen 85
4.4 Die Dreieckszerlegung einer Matrix 90
4.5 Determinanten 97
5 Lineare Abbildungen 109
5.1 Lineare Abbildungen - Basisdarstellung 109
5.2 Orthogonalitat 116
5.3 Orthogonale Transformationen 124
6 Lineare Ausgleichsprobleme und lineare Programme 133
6.1 Ausgleichsprobleme und Normalgleichungen 133
6.2 Die QR-Zerlegung 137
6.3 Lineare Programme 142
6.4 Das Simplexverfahren 148
7 Eigenwerttheorie fürMatrizen 153
7.1 Eigenwerte und Eigenvektoren 153
7.2 Symmetrische Matrizen und Hauptachsentransformation 168
7.3 Numerische Berechnung von Eigenwerten und Eigenvektoren 180
8 Konvergenz von Folgen und Reihen 193
8.1 Folgen 193
8.2 Konvergenzkriterien fur reelle Folgen 199
8.2.1 Folgen in Vektorraumen 207
8.2.2 Konvergenzkriterien fur Reihen 209
9 Stetigkeit und Differenzierbarkeit 217
9.1 Stetigkeit und Grenzwerte von Funktionen 217
9.2 Differentialrechnung einer Variablen 227
10 Weiterer Ausbau der Differentialrechnung 237
10.1 Mittelwertsatze und Satz von Taylor 237
10.2 Die Regeln von de l'Hospital 253
10.3 Kurvendiskussion 255
10.4 Fehlerrechnung 258
10.5 Fixpunkt-Iterationen 264
11 Potenzreihen und elementare Funktionen 271
11.1 Gleichmaβige Konvergenz 271
11.2 Potenzreihen 274
11.3 Elementare Funktionen 280
12 Interpolation 289
12.1 Problemstellung 289
12.2 Polynom-Interpolation nach Aitken, Neville und Newton 295
12.3 Spline-Interpolation 299
13 Integration 305
13.1 Das bestimmte Integral 305
13.2 Kriterien fur Integrierbarkeit 310
13.3 Der Hauptsatz und Anwendungen 314
13.4 Integration rationaler Funktionen 321
13.5 Uneigentliche Integrale 326
13.6 Parameterabhangige Integrale 331
14 Anwendungen der Integralrechnung 337
14.1 Rotationskorper 337
14.2 Kurven und Bogenlange 342
14.3 Kurvenintegrale 349
15 Numerische Quadratur 353
15.1 Die Newton-Cotes-Formeln 354
15.2 Extrapolation 359
16 Periodische Funktionen, Fourier-Reihen 365
16.1 Grundlegende Begriffe 365
16.2 Fourier-Reihen 371
16.3 Numerische Berechnung der Fourier-Koeffizienten 382
Weiterführende Literatur 389
Stichwortverzeichnis 393