経済物理学入門<br>Econophysics : An Introduction

個数:

経済物理学入門
Econophysics : An Introduction

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 352 p.
  • 商品コード 9783527408153

Full Description

Filling the gap for an up-to-date textbook in this relatively new interdisciplinary research field, this volume provides readers with a thorough and comprehensive introduction. Based on extensive teaching experience, it includes numerous worked examples and highlights in special biographical boxes some of the most outstanding personalities and their contributions to both physics and economics. The whole is rounded off by several appendices containing important background material.

Contents

Preface xi

1 Introduction 1

1.1 A Brief History of Economics from the Physicist's Perspective 5

1.2 Outline of the Book 10

2 The Random Walk 13

2.1 What is a Random Walk? 13

2.1.1 Definition of Random Walk 13

2.1.2 The Random Walk Formalism and Derivation of the Gaussian Distribution 17

2.1.3 The Gaussian or Normal Distribution 21

2.1.4 Wiener Process 23

2.1.5 Langevin Equation and Brownian Motion 24

2.2 Do Markets Follow a Random Walk? 27

2.2.1 What if the Time-Series Were Similar to a Random Walk? 28

2.2.2 What are the "Stylized" Facts? 31

2.2.3 Short Note on Multiplicative Stochastic Processes ARCH/GARCH 33

2.2.4 Is the Market Efficient? 34

2.3 Are there any Long-Time Correlations? 36

2.3.1 Detrended Fluctuation Analysis (DFA) 36

2.3.2 Power Spectral Density Analysis 37

2.3.3 DFA and PSD Analyses Of the Autocorrelation Function Of Absolute Returns 38

3 Beyond the Simple Random Walk 41

3.1 Deviations from Brownian Motion 43

3.2 Multifractal Random Walk 46

3.3 Rescaled Range (R/S) Analysis and the Hurst Exponent 47

3.4 Is there Long-Range Memory in the Market? 48

3.4.1 Mandelbrot and the Joseph Effect 49

3.4.2 Cycles in Economics 49

3.4.3 Log-Normal Oscillations 50
4 Understanding Interactions through Cross-Correlations 53

4.1 The Return Cross-Correlation Matrix 54

4.1.1 Eigenvalue Spectrum of Correlation Matrix 55

4.1.2 Properties of the "Deviating" Eigenvalues 58

4.1.3 Filtering the Correlation Matrix 60

4.2 Time-Evolution of the Correlation Structure 62

4.3 Relating Correlation with Market Evolution 64

4.4 Eigenvalue Spacing Distributions 67

4.4.1 Unfolding of Eigenvalues for the Market Correlation Matrix 69

4.4.2 Distribution of Eigenvalue Spacings 69

4.4.3 Distribution of Next Nearest Spacings between Eigenvalues 70

4.4.4 The Number Variance Statistic 70

4.5 Visualizing the Network Obtained from Cross-Correlations 72

4.6 Application to Portfolio Optimization 76

4.7 Model of Market Dynamics 77

4.8 So what did we Learn? 79

5 Why Care about a Power Law? 83

5.1 Power Laws in Finance 83

5.1.1 The Return Distribution 84

5.1.2 Stock Price Return Distribution 86

5.1.3 Market Index Return Distribution 92

5.1.3.1 TP Statistic 94

5.1.3.2 TE Statistic 95

5.1.3.3 Hill Estimation of Tail Exponent 97

5.1.3.4 Temporal Variations in the Return Distribution 98

5.2 Distribution of Trading Volume and Number of Trades 103

5.3 A Model for Reproducing the Power Law Tails of Returns and Activity 104

5.3.1 Reproducing the Inverse Cubic Law 110

6 The Log-Normal and Extreme-Value Distributions 115

6.1 The Log-Normal Distribution 115

6.2 The Law of Proportionate Effect 115

6.3 Extreme Value Distributions 119

6.3.1 Value at Risk 121

7 When a Single Distribution is not Enough? 125

7.1 Empirical Data on Income and Wealth Distribution 125

8 Explaining Complex Distributions with Simple Models 131

8.1 Kinetic Theory of Gases 131

8.1.1 Derivation of Maxwell-Boltzmann Distribution 131

8.1.2 Maxwell-Boltzmann Distribution in D Dimensions 135

8.2 The Asset Exchange Model 136

8.3 Gas-Like Models 137

8.3.1 Model with Uniform Savings 140

8.3.2 Model with Distributed Savings 142

9 But Individuals are not Gas Molecules 147

9.1 Agent-Based Models: Going beyond the Simple Statistical Mechanics of Colliding Particles 147

9.2 Explaining the Hidden Hand of Economy: Self-Organization in a Collection of Interacting "Selfish" Agents 149

9.2.1 Hidden Hand of Economy 149

9.2.2 A Minimal Model 150

9.2.2.1 Unlimited Money Supply and Limited Supply of Commodity 151

9.2.2.2 Limited Money Supply and Limited Supply Of Commodity 153

9.3 Game Theory Models 154

9.3.1 Minority Game and its Variants (Evolutionary, Adaptive and so on) 159

9.3.1.1 El Farol Bar Problem 159

9.3.1.2 Basic Minority Game 161

9.3.1.3 Evolutionary Minority Games 161

9.3.1.4 Adaptive Minority Games 164

9.4 The Kolkata Paise Restaurant Problem 168

9.4.1 One-Shot KPR Game 169

9.4.2 Simple Stochastic Strategies and Utilization Statistics 172

9.4.2.1 No Learning (NL) Strategy 173

9.4.2.2 Limited Learning (LL) Strategy 173

9.4.2.3 One Period Repetition (OPR) Strategy 175

9.4.2.4 Follow the Crowd (FC) Strategy 176

9.4.3 Limited Queue Length and Modified KPR Problem 176

9.4.4 Some Uniform Learning Strategy Limits 178

9.4.4.1 Numerical Analysis 179

9.4.4.2 Analytical Results 180

9.4.5 Statistics of the KPR Problem: A Summary 181

9.5 Agent-Based Models for Explaining the Power Law for Price Fluctuations, and so on 184

9.5.1 Herding Model: Cont-Bouchaud 184

9.5.2 Strategy Groups Model: Lux-Marchesi 187

9.6 Spin-Based Model of Agent Interaction 190

9.6.1 Random Network of Agents and the Mean Field Model 194

9.6.2 Agents on a Spatial Lattice 195

10 . . . and Individuals don't Interact Randomly: Complex Networks 203

10.1 What are Networks? 204

10.2 Fundamental Network Concepts 206

10.2.1 Measures for Complex Networks 207

10.3 Models of Complex Networks 210

10.3.1 Erdős-Rényi Random Network 210

10.3.2 Watts-Strogatz Small-World Network 212

10.3.3 Modular Small-World Network 213

10.3.4 Barabasi-Albert Scale-Free Network 216

10.4 The World Trade Web 220

10.5 The Product Space of World Economy 230

10.6 Hierarchical Network within an Organization: Connection to Power-Law Income Distribution 234

10.6.1 Income as Flow along Hierarchical Structure: The Tribute Model 236

10.7 The Dynamical Stability of Economic Networks 237

11 Outlook and Concluding Thoughts 245

11.1 The Promise and Perils of Economic Growth 246

11.2 Jay Forrester's World Model 247

Appendix A Thermodynamics and Free Particle Statistics 251

A.1 A Brief Introduction to Thermodynamics and Statistical Mechanics 251

A.1.1 Preliminary Concepts of Thermodynamics 251

A.1.2 Laws of Thermodynamics 253

A.2 Free Particle Statistics 256

A.2.1 Classical Ideal Gas: Maxwell-Boltzmann Distribution and Equation of State 257

A.2.1.1 Ideal Gas: Equation of State 258

A.2.2 Quantum Ideal Gas 260

A.2.2.1 Bose Gas: Bose-Einstein (BE) Distribution 261

A.2.2.2 Fermi Gas: Fermi-Dirac Distribution 263

Appendix B Interacting Systems: Mean Field Models, Fluctuations and Scaling Theories 265

B. 1 Interacting Systems: Magnetism 265

B.1.1 Heisenberg and Ising Models 265

B.1.2 Mean Field Approximation (MFA) 266

B.1.2.1 Critical Exponents in MFA 269

B.1.2.2 Free Energy in MFA 272

B.1.3 Landau Theory of Phase Transition 273

B.1.4 When is MFA Exact? 275

B.1.5 Transverse Ising Model (TIM) 276

B.1.5.1 MFA for TIM 278

B.1.5.2 Dynamical Mode-Softening Picture 280

B.2 Quantum Systems with Interactions 281

B.2.1 Superfluidity and Superconductivity 281

B.2.2 MFA: BCS Theory of Superconductivity 282

B.3 Effect of Fluctuations: Peierls' Argument 286

B.3.1 For Discrete Excitations 286

B.3.2 For Continuous Excitations 289

B.4 Effect of Disorder 290

B.4.1 Annealed Disorder: Fisher Renormalization 290

B.4.2 Quenched Disorder: Harris Criterion 291

B.5 Flory Theory for Self-Avoiding Walk (SAW) Statistics 292

B.5.1 Random Walk Statistics 292

B.5.2 SAW Statistics 292

B.6 Percolation Theory 293

B.6.1 Critical Exponents 295

B.6.2 Scaling Theory 296

B.7 Fractals 297

Appendix C Renormalization Group Technique 301

C.1 Renormalization Group Technique 301

C.1.1 Widom Scaling 301

C.1.2 Formalism 303

C.1.3 RG for One-Dimension Ising Model 305

C.1.4 Momentum Space RG for 4 Dimensional Ising Model 307

C.1.5 Real Space RG for Transverse Field Ising Chain 316

C.1.6 RG Method for Percolation 319

C.1.6.1 Site Percolation in One Dimension 319

C.1.6.2 Site Percolation in Two Dimension Triangular Lattice 321

C.1.6.3 Bond Percolation in Two Dimension Square Lattice 322

Appendix D Spin Glasses and Optimization Problems: Annealing 325

D.1 Spin Glasses 325

D.1.1 Models 325

D.1.2 Critical Behavior 326

D.1.3 Replica Symmetric Solution of the S-K Model 327

D.2 Optimization and Simulated Annealing 329

D.2.1 Some Combinatorial Optimization Problems 330

D.2.1.1 The Traveling Salesman Problem (TSP) 330

D.2.2 Details of a few Optimization Techniques 333

D.3 Modeling Neural Networks 336

D.3.1 Hopfield Model of Associative Memory [20] 337

Appendix E Nonequilibrium Phenomena 339

E.1 Nonequilibrium Phenomena 339

E.1.1 Fluctuation Dissipation Theorem 339

E.1.2 Fokker-Planck Equation and Condition of Detailed Balance 340

E.1.3 Self-Organized Criticality (SOC) 340

E.1.3.1 The BTW Model and Manna Model 341

E.1.3.2 Subcritical Response: Precursors 342

E.1.4 Dynamical Hysteresis 345

E.1.5 Dynamical Transition in Fiber Bundle Models 346

Some Extensively Used Notations in Appendices 351

Index 353

最近チェックした商品